首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report for the first time on the synthesis of core-shell particles containing chloroaluminiumphthalocyanine (ClAlPc) prepared using a sol-gel technique. These particles have the dye molecules at the core, encapsulated by silica shell. The mean size of the particle is determined from HRTEM studies and is found to be approximately 0.08 microm. The surface and bulk compositions of the core-shell particles are studied by XPS and EDAX measurements, respectively. Time-resolved fluorescent measurements indicate a decrease in fluorescence lifetime for the core-shell particles as compared to that of bare dye dissolved in ethanol. This is analyzed on the basis of available theoretical models. Third-order nonlinear optical effects are investigated by the Z-scan technique using 8 ns pulses at a wavelength of 532 nm from a frequency-doubled Nd:YAG laser. The analysis indicates that both singlet and triplet excited-state absorption contribute to nonlinear absorption.  相似文献   

2.
采用优化的Stöber法制备了平均粒径为230 nm的单分散球形SiO2颗粒,并以此为内核,通过水解沉积法制备了不同壳层厚度的核-壳结构SiO2@Fe2O3催化剂。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、N2物理吸附和X射线衍射分析(XRD)等手段对催化剂进行表征,探讨了不同制备条件对SiO2@Fe2O3催化剂形貌的影响。结果表明,通过水解沉积法制备的SiO2@Fe2O3催化剂具有明显的核-壳结构,并且保持了原始SiO2核的球形形貌,Fe2O3纳米粒子通过-OH的氢键作用连接在SiO2表面,形成了2~10 nm厚的Fe2O3均匀连续包覆层。  相似文献   

3.
Monodisperse dye-containing crosslinked particles are promising for application in novel optical chemical sensors due to their intrinsic sensitivity. However, preparation of these particles in aqueous media still remains a challenge, since luminophores inhibit radical processes or else cannot embed into polymer chains because of difference in monomer reactivity ratios. In this work, novel dye-containing monodisperse crosslinked particles were prepared and characterized. In order to obtain dye-containing monodisperse crosslinked particles, we studied seed copolymerization of styrene in the presence of divinylbenzene. The influence of nature and concentration of the used comonomers and co-solvents on shape, size distributions and surface characteristics of the particles formed was investigated. Shapes and diameters of the particles were analyzed by DLS, TEM and SEM. The data of SEM and optical spectroscopy studies demonstrated that the synthesized particles were able to self-assemble into thin-film three-dimensional ordered structures. Finally, the structures under study are promising for development of sensor devices with optical response to acetone.  相似文献   

4.
The progressive dissolution of carboxylated latex particles with increasing pH was utilized to investigate the internal structure of core-shell latex particles, in comparison with that of copolymeric latex particles formed from the same monomers. The results indicated that in those latex particles which are formed when ethyl acrylate (EA) -methacrylic acid (MAA) or methyl acrylate (MA) -MAA mixture is polymerized in the presence of poly(MA-MAA) or poly(EA-MAA) seeds the shell is composed of the more hydrophilic poly(MA-MAA) molecules relatively high in MAA content and the core is composed of both poly(MA-MAA) and poly(EA-MAA) molecules, regardless of the order of the stage feed, while the copolymeric latex particles are relatively uniform from surface to center in distribution of all components except MAA. Examination of the distribution of the carboxylic groups in all of the latex particles showed their concentration to be highest at the surface and to decrease with proximity to the center in accordance with other findings reported in the literature.  相似文献   

5.
The work focused on the influence of the internal structure of MBS core-shell impact modifiers on the properties of PVC/MBS blends. MBS was synthesized by grafting styrene and methyl methacrylate onto PB seed latex by emulsion polymerization. Different monomer feeding manners and initiators were employed to control the internal structure of core-shell particles. The investigation of the morphology of MBS showed that when styrene monomer was fed in a semicontinuous feeding manner and redox initiator was used, core-shell particles with rarely sub-inclusions could be obtained. When preswollen manner of styrene monomer and redox initiator were employed, there were a large number of small sub-inclusions in the core of MBS. When AIBN was used as initiator, large sub-inclusions could be found in the core of MBS. The results of the Izod impact tests showed that PVC/MBS blend with MBS prepared by preswollen manner had the lowest brittle-ductile transition temperature. And TEM showed that the different internal structures of core-shell particles could lead to different deformation mechanisms. While the results of transparency tests showed that the presence of the sub-inclusions in the MBS impaired the transparency of the blends.  相似文献   

6.
Surfactant-free seeded (core-shell) polymerization of cationic polymer colloids is presented. Polystyrene core particles with sizes between 200 nm and 500 nm were synthesized. The number average diameter of the colloidal core particles increased with increasing monomer concentration. Cationic shells were introduced by co-polymerizing styrene with the cationic monomers (vinylbenzyl)trimethylammonium chloride (VBTMAC), [(2-methacryloyloxy)ethyl] trimethylammonium chloride (METMAC) and [(2-(acryloyloxy)ethyl] trimethylammonium chloride (AETMAC) onto the polystyrene cores. The cationic monomer AETMAC, undocumented to our knowledge in colloid synthesis, produced the best cationic shells and could be incorporated at much higher concentrations in the shell compared to the commonly used VBTMAC and METMAC, which yielded undesired polyelectrolyte side products already at relatively low cationic monomer concentrations. In shell formation, feed concentrations of AETMAC between 1.3 mol% (2.4 wt%) and 10.7 mol% (20 wt%) in styrene could be employed, allowing us to control colloid surface charge density over a wide range. The influence of various polymerization parameters (initiator concentration, cross-linking agent, and ionic strength) on the co-polymerization process with AETMAC is discussed. Core-shell particles were characterized using HR-SEM, potentiometric titration and zeta potential measurements.  相似文献   

7.
Silica-coated Fe(2)O(3) nanoparticles were synthesized as carriers for the covalent immobilization and release of antimicrobial drug sparfloxacin (SPFX). SPFX-loaded nanoparticles exhibited time-dependent drug release, with no measurable in vitro cytotoxicity, making the drug@nanoparticle conjugates potentially relevant for nanomedicine applications.  相似文献   

8.
Europium-doped Gd2O3 with an average size of approximately 15 nm was coated on the surface of preformed silica nanospheres by the wet chemical method. SEM and TEM photographs showed that SiO2/Gd2O3:Eu core-shell submicrospheres are obtained. XRD patterns indicated that the Gd2O3:Eu shell is crystalline after heat treatment. FTIR and XPS spectra showed that the Gd2O3:Eu shell is linked to the silica surface by forming a Si-O-Gd bond. Photoluminescence studies showed that the luminescent properties are still retained after coating on an inert silica core; additionally, we noted that the emitting peaks are broadened, which results from size effects and interface effects of nanocrystal.  相似文献   

9.
We report the synthesis of well-dispersed core-shell Au@SiO(2) nanoparticles with minimal extraneous silica particle growth. Agglomeration was suppressed through consecutive exchange of the stabilizing ligands on the gold cores from citrate to L-arginine and finally (3-mercaptopropyl)triethoxysilane. The result was a vitreophilic, stable gold suspension that could be coated with silica in a biphasic mixture through controlled hydrolysis of tetraethoxysilane under L-arginine catalysis. Unwanted condensation of silica particles without gold cores was limited by slowing the transfer across the liquid-liquid interface and reducing the concentration of the L-arginine catalyst. In-situ dynamic light scattering and optical transmission spectroscopy revealed the growth and dispersion states during synthesis. The resulting core-shell particles were characterized via dynamic light scattering, optical spectroscopy, and electron microscopy. Their cores were typically 19 nm in diameter, with a narrow size distribution, and could be coated with a silica shell in multiple steps to yield core-shell particles with diameters up to 40 nm. The approach was sufficiently controllable to allow us to target a shell thickness by choosing appropriate precursor concentrations.  相似文献   

10.
Organic-inorganic hybrid particles have many potential applications, but almost all of this research was focused on the hybrid particles containing one kind of inorganic nanoparticles. This paper presented a facile preparation method for SiO2/PS/TiO2 multilayer core-shell hybrid microspheres. In this approach, positively charged SiO2/PS core-shell hybrid particles were first synthesized by miniemulsion polymerization using cationic initiator and emulsifier. These positively charged SiO2/PS hybrid particles were mixed with tetra-n-butyl titanate for sol-gel reaction to directly form SiO2/PS/TiO2 multilayer core-shell hybrid microspheres. Some influencing parameters such as surfactant concentration, tetra-n-butyl titanate amount, and glacial acetic acid amount were investigated. TEM, TGA, and EDX analyses indicated that titania layers were successfully coated onto the surfaces of hybrid microspheres.  相似文献   

11.
Yang H  Zhu Y 《Talanta》2006,68(3):569-574
A wide size range of SiO2 particles were synthesized and were used as enzyme immobilization carriers to fabricate glucose biosensors. The size of the particles was in the range of 17-520 nm. These biosensors could be operated under physiological conditions (0.1 M phosphate buffer, pH 7.2). Particle size could affect the performance of SiO2 modified glucose biosensors drastically. The smaller particles had higher performance. The smallest SiO2 modified biosensor could work well in the glucose concentration range of 0.02-10 mM with a correlation coefficient of 0.9993. Its sensitivity was 2.08 μA/mM and the detection limit was 1.5 μM glucose.  相似文献   

12.
在纳米粒子的应用中,确定溶液中纳米微粒的含量十分重要。目前,对于含有纳米微粒的水溶液体系中纳米微粒的分析,如纳米复合镀溶液、纳米复合化学镀溶液、纳米浆料等基本采用重量分析法。重量分析法存在操作工序多、费时、无法实现适时监控等缺点,而且由于纳米微粒悬浮性很强,在多次清洗、分离过程中难免丢样,实验误差较大。  相似文献   

13.
Water-borne raspberry-like PMMA/SiO2 nanocom-posite particles were prepared via free radical copolymerization of methyl methacrylate (MMA) with 1-vinylimidazole (1-VID) in the presence of ultrafine aqueous silica sols. The acid-base interaction between hydroxyl groups (acidic) of silica surfaces and amino groups (basic) of 1-VID was strong enough for promoting the formation of long-standing stable PMMA/SiO2 nanocomposite particles when 10 mol% or more 1-VID as auxiliary monomer was used. The average particle sizes and the silica contents of the nanocomposite particles were in the ranges from 120–330 nm and 15%–20%, respectively. TEM and SEM observations indicated a raspberry-like morphology of the obtained nanocomposite particles. __________ Translated from Chemical Journal of Chinese Universities, 2005, 26(7) (in Chinese)  相似文献   

14.
15.
Highly uniform, core-shell microgels consisting of single gold nanoparticle cores and cross-linked poly-N-isopropylacrylamide (PNIPAM) shells were prepared by a novel, versatile protocol. The synthetic pathway allows control over the polymer shell thickness and its swelling behavior. The core-shell structure was investigated by electron microscopy and atomic force microscopy, whereas the swelling behavior of the shell was studied by means of dynamic light scattering and UV-vis spectroscopy. Furthermore, the latter method was used to investigate the optical properties of the hybrid particles. By modeling the scattering contribution from the PNIPAM shells, the absorption spectra of the gold nanoparticle cores could be recovered. This allows the particle concentration to be determined, and this in turn permits the calculation of the molar mass of the hybrid particles as well as the refractive index of the shells.  相似文献   

16.
In the current study, less-explored low-index surfaces of rutile-like SiO2 have been examined through first-principles electronic structure calculations. This work reports on the surface energies of the (110), (100), (101) and (001) facets of high-pressure SiO2 polymorph, also referred to stishovite. Surface-induced atomic displacements with respect to bulk were computed using a periodic slab approach. A multitude of density functional approximations, both dispersion-free and dispersion-corrected, were applied to perform the necessary calculations. Anomalously, the (100) plane was discovered to be the most energetically favorable low-index facet. It also turned out that the (001) was the least stable cut. In addition, the level of agreement between our computed surface energies and atomic shifts for rutile SiO2(110) and the results of the investigation prior to the present work was found to be acceptable.  相似文献   

17.
Internalization of nano- and microparticles into live cells correlates closely with their potential applications, functions, cytotoxicity and intracellular drug delivery. Particularly, delivery of a large variety of cargoes such as proteins, peptides, nucleic acids and small particles into cells could be enhanced by some ligands such as Tat peptide. In this work, the ability of Tat mediated cellular uptake was assessed. The Tat peptide was covalently immobilized to fluorescein tagged SiO2 particles (FITC–SiO2–NH2 particles) with a diameter of 200 nm. BCA protein assay determined that the grafting amount of the Tat peptide could be controlled within a range of 0–3.5 μg/mg SiO2 particles by the Tat feeding amount. Surface immobilization of the Tat peptide did not bring apparent changes on the surface morphology and charge property of the SiO2–NH2 particles. By contrast, the surface charge of both the FITC–SiO2–NH2 particles and the FITC–SiO2–Tat particles was reversed from slight positive in Dulbecco's Modified Eagles Medium (DMEM) to slight negative in DMEM/fetal bovine serum, conveying adsorption of plasma proteins on the particles. Flow cytometry measurement showed that the FITC–SiO2–Tat particles were internalized by HepG2 cells with a significant faster rate and a higher number of particles than that of the FITC–SiO2–NH2 particles. Moreover, internalization of the Tat peptide decorated particles was less influenced by the low temperature at 4 °C. The Tat decoration affected the subcellular distribution of the particles as well, resulting in localization of the particles in the cell nucleus. No obvious cytotoxicity was detected for both the FITC–SiO2–NH2 particles and the FITC–SiO2–Tat particles.  相似文献   

18.
A novel synthetic strategy was developed for the preparation of magnetic core-shell (MCS) particles consisting of hydrophobic poly(methyl methacrylate) cores with hydrophilic chitosan shells and gamma-Fe2O3 nanoparticles inside the cores via copolymerization of methyl methacrylate from chitosan in the presence of vinyl-coated gamma-Fe2O3 nanoparticles. The magnetic core-shell particles were characterized with transmission electron microscopy, field-emission scanning electron microscopy, particle size and zeta-potential measurements, vibrating sample magnetometry, and atomic force microscopy, respectively. The MCS particles were less than 200 nm in diameter with a narrow size distribution (polydispersity = 1.09) and had a good colloidal stability (critical coagulation concentration = 1.2 M NaCl at pH 6.0). Magnetization study of the particles indicated that they exhibited superparamagnetism at room temperature and had a saturation magnetization of 2.7 A m2/kg. The MCS particles were able to form a continuous film on a glass substrate, where magnetic nanoparticles could evenly disperse throughout the film. Thus, these new materials should be extremely useful in various applications.  相似文献   

19.
The thermal decomposition of commercial silicone grease was carried out in a closed reactor (Swagelok) that was heated at 800 degrees C for 3 h, yielding a SiO2-carbon composite with a BET surface area of 369 m2/g. The bulk conductivity (5.72 x 10(-6) S x cm(-2)) of the SiO2-carbon composite was determined by impedance measurements. The as-prepared SiO2-carbon composite was further annealed at 500 degrees C in air for 2 h, which led to the formation of white paramagnetic silica particles (confirmed by ESR), possessing a surface area of 111 m2/g. The present synthetic technique requires unsophisticated equipment and a low-cost commercial precursor, and the reaction is carried out without a solvent, surfactant, or catalyst. The mechanism for the formation of a porous SiO2-carbon composite from the silicone grease is also presented.  相似文献   

20.
Preparation of core-shell polymer colloid particles by encapsulation   总被引:7,自引:0,他引:7  
 By means of heterocoagulation anionic poly-[styrene] particles were coated with smaller electrosterically stabilised cationic particles of poly-[butyl methacrylate]. On heating the heterocoagulated units 45 °C above the glass transition temperature of poly-[butyl methacrylate], as predicted theoretically, the latter polymer spread over the surface of the poly-[styrene] particle to give a composite particle with a core-shell structure. It was found that the extent of packing of the small particles on the larger core particle was a critical feature of the coating process. Received: 12 September 1996 Accepted: 18 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号