首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical and spectroelectrochemical properties of N,N-diphenyl-1,4-phenylenediamine (PDA) were investigated in the absence and in the presence of 18-crown-6-ether (18C6) or dibenzo 24-crown-8-ether (DB24C8), in a solution of tetrabutylammonium hexafluorophosphate (TBAPF6) in acetonitrile and in the presence of trifluoroacetic acid (TFA) only for 18C6. In neutral acetonitrile, PDA undergoes two reversible oxidation processes, which lead first to the formation of the cation-radical considered as mixed valence (MV) compound, and then to the dicationic species. When 18C6 is added in the medium and depending on 18C6 concentration, cyclic voltammetry shows a marked shift to more cathodic potentials of the current waves of the second redox process only. This is attributed to a strong interaction between the PDA(+2) dication and two 18C6 molecules, leading to the formation of a supramolecular complex with an association constant value K(a) = 7.0 × 10(7) M(-2). The interaction of 18C6 with PDA(+2) dication has a direct effect on the PDA(+.) cation-radical corresponding to a decrease in the lifetime of the MV compound and of the intramolecular electron transfer rate when 18C6 is present. Indeed, it results in a large decrease in the intervalence charge transfer (IV-CT) between the two amine centers in the MV compound (k(th) = 1.35 × 10(10) s(-1) in 18C6-free neutral solution containing 5.0 × 10(-4) M PDA, and k(th) = 3.6 × 10(9) s(-1) in the same medium at [18C6]/[PDA] = 20/1). And the comproportionation constant K(co) falls from 6.0 × 10(6) in 18C6-free solution to 1.6 × 10(3) at [18C6]/[PDA] = 20/1. In acidified acetonitrile and when TFA concentration is increased, PDA still shows the two successive and reversible oxidation processes, but both are shifted to more anodic potentials. However, when 18C6 is added, the two oxidation waves shift to more cathodic potentials, indicating an interaction of all protonated PDA redox states with 18C6, resulting in the formation of supramolecular complexes. In the presence of TFA, the value of K(co) is decreased to 4.3 × 10(4), but it remains unchanged when 18C6 is added, indicating no change in the lifetime of the MV compound. In this medium, IV-CT in the MV compound is greater with 18C6 (k(th) = 2.3 × 10(10) s(-1) for [18C6]/[PDA] = 20/1) than without (k(th) = 1.4 × 10(9) s(-1)), which indicates a more important IV-CT rate when 18C6 is present. The results show for the first time that is it possible to control the IV-CT rate, through the lifetime and the potential range where the MV compound is the most important. This control is not obtained as usual by chemical modification of the structure of the starting molecule, but by varying either the acidity or the 18C6 concentration as external stimuli, which lead to reversible formation/dissociation of a supramolecular complex species. Moreover, we also studied the electrochemical properties of PDA in the presence of wider crown ether such as DB24C8. We showed that PDA undergoes the same electrochemical behavior with DB24C8 than with 18C6 in neutral organic medium (K(a) = 2.9 × 10(3) M(-1)). This result suggests that the complexation between the electrogenerated PDA(+2) dication and the crown ethers may occur through face-to-face mode rather than rotaxane mode even with DB24C8 which is supposed to form inclusion complexes.  相似文献   

2.
A cobalt complex [[Co(dpqa)]2(dhbq)](PF6)3 ((PF6)3, dhbq = deprotonated 2,5-dihydroxy-1,4-benzoquinone, dpqa = di(2-pyridylmethyl)-N-(quinolin-2-ylmethyl)amine) was prepared and studied by X-ray diffraction, electrochemistry, ESR, thermally and photo-induced magnetic measurements; the results show that the ancillary ligand finely tuned structural factors as well as intermolecular interactions that affect the VT behavior.  相似文献   

3.
The key role of the molecular orbitals in describing electron transfer processes is put in evidence for the intervalence charge transfer (IVCT) of a synthetic nonheme binuclear mixed‐valence Fe3+/Fe2+ compound. The electronic reorganization induced by the IVCT can be quantified by controlling the adaptation of the molecular orbitals to the charge transfer process. We evaluate the transition energy and its polarization effects on the molecular orbitals by means of ab initio calculations. The resulting energetic profile of the IVCT shows strong similarities to the Marcus' model, suggesting a response behaviour of the ensemble of electrons analogue to that of the solvent. We quantify the extent of the electronic reorganization induced by the IVCT process to be 11.74 eV, a very large effect that induces the crossing of states reducing the total energy of the transfer to 0.89 eV. © 2015 Wiley Periodicals, Inc.  相似文献   

4.
The mononuclear high-spin iron(III) complexes [Fe(3-MeOsalpn)Cl(H2O)] (1) and [Fe(3-MeOsalpn)(NCS)(H2O)]·0.5CH3CN (2) and the tetranuclear oxo-bridged compound [{Fe(3-MeOsalpn)Gd(NO3)3}2(μ-O)]·CH3CN (3) [3-MeOsalpn2− = N,N′-propylenebis(3-methoxysalicylideneiminate)] have been prepared and magneto-structurally characterised. The iron(III) ion in 1 and 2 is six-coordinated in a somewhat distorted octahedral surrounding with the two phenolate-oxygens and two imine-nitrogens from the Schiff-base building the equatorial plane and a water (1 and 2) and a chloro (1)/thiocyanate-nitrogen (2) in the axial positions. The neutral mononuclear units of 1 and 2 are assembled into centrosymmetric dinuclear motifs through hydrogen bonds between the axially coordinated water molecule of one iron centre and methoxy-oxygen atoms from the Schiff-base of the adjacent iron atom. The values of the intradimer metal-metal distance within the supramolecular dimers are 4.930 (1) and 4.878 Å (2). The tetranuclear of 3 can be described as two {FeIII(3-MeOsalpn)} units connected through an oxo-bridge, each one hosting a [GdIII(NO3)3] entity in the outer cavity defined by the two phenolate- and two methoxy-oxygen atoms. The values of the intramolecular Fe?Fe and Fe?Gd distances in 3 are 3.502 and 3.606 Å, respectively. The analysis of the magnetic data of 1-3 in the temperature range 1.9-300 K shows the occurrence of weak intermolecular antiferromagnetic interactions in 1 and 2 [J = −0.76 (1) and −0.75 cm−1 (2) with the Hamiltonian defined as H = −JSFe1·SFe1] whereas two intramolecular antiferromagnetic interactions coexist in 3, one very strong between the two iron(III) ions (J1) through the oxo bridge and the other much weaker between the iron(III) and the Gd(III) ions (J2) across the double phenoxo oxygens [J1 = −275 cm−1 and J2 = −3.25 cm−1, the Hamiltonian being defined as H=-J1SFe1·SFe1-J2(SFe1·SGd1+SFe1·SGd1)]. These values are analysed in the light of the structural data and compared with those of related systems.  相似文献   

5.
The compound [2‐(aminomethyl)pyridine‐κ2N,N′][chlorido/trifluoromethanesulfonato(0.91/0.09)][(10,11‐η)‐5H‐dibenzo[a,d]cyclohepten‐5‐amine‐κN](triphenylphosphane‐κP)ruthenium(II) trifluoromethanesulfonate dichloromethane 0.91‐solvate, [Ru(CF3SO3)0.09Cl0.91(C6H8N2)(C15H13N)(C18H15P)]CF3SO3·0.91CH2Cl2, belongs to a series of RuII complexes that had been tested for transfer hydrogenation, hydrogenation of polar bonds and catalytic transfer hydrogenation. The crystal structure determination of this complex revealed disorder in the form of two different anionic ligands sharing the same coordination site, which other spectroscopic methods failed to characterize. The reduced catalytic activity of the title compound was not fully understood until the crystallographic data provided evidence for the mixed ligand species. The crystal structure clearly shows that the majority of the synthesized material has a chloride ligand present. Only a small portion of the material is the expected complex [RuII(OTf)(ampy)(η2‐tropNH2)(PPh3)]OTf, where OTf is triflate or trifluoromethanesulfonate, ampy is 2‐(aminomethyl)pyridine and tropNH2 is 5H‐dibenzo[a,d]cyclohepten‐5‐amine.  相似文献   

6.
A series of elements necessary for life bodies, such as Mg, Cu, Mn, Fe, Co, Zn etc, arechosen as ceflter ions of complexes, because most of them act as active centers ofenZymes and auxiliary factors. We select dien as ligand because nitrogen, especiallymuti-nitrogen coordination is general in natural enzymes and simulated systems,furthermore dien has structural flexibility.The complexes of Mg containing dien and the activity of cleaving DNAA series of metals, such as Mg, Mn, Fe, Co, Ni, …  相似文献   

7.
Reaction of K3[Fe(CN)6] with [Cu(tn)2](ClO4)2 (tn=1,3-diaminopropane) leads to a novel mixed cyano and tn bridged three-dimensional (3D) bimetallic assembly (1), in which each [Fe(CN)6]4− anion connects six copper(II) cations via six CN groups, whereas each copper(II) cation is linked to three [Fe(CN)6]4− ions and two other copper(II) ions through Cu–NC–Fe and Cu–tn–Cu linkages, respectively. Magnetic studies reveal weak antiferromagnetic interactions between the nearest CuII (S=1/2) ions through the diamagnetic [Fe(CN)6]4− anion.  相似文献   

8.
9.
The reactions of Fe(CO)5 or Fe3(CO)12 with NaBEt3H or KB[CH(CH3)C2H5]3H, respectively and treatment of the resulting carbonylates M2Fe(CO)4, M = Na, K with elemental selenium in appropriate ratios lead to the formation of M2[Fe2(CO)6(μ‐Se)2]. Subsequent reactions with organo halides or the complex fragment cpFe(CO)2+, cp = η5‐C5H5 afforded the selenolato complexes [Fe2(CO)6(μ‐SeR)2], R = CH2SiMe3 ( 1 ), CH2Ph ( 2 ), p‐CH2C6H4NO2 ( 3 ), o‐CH2C6H4CH2 ( 4 ) and cpFe(CO)2+ ( 5 ) in moderate to good yields. A similar reaction employing Ru3(CO)12, Se and p‐O2NC6H4CH2Br leads to the formation of the corresponding organic diselenide. The X‐ray structures of 1 , 3 , 4 and 5 were determined and revealed butterfly structures of the Fe2Se2 cores. The substituents in 1 , 3  and 5 adopt different conformations depending on their steric demand. In 4 , the conformation is fixed because of the chelate effect of the ligand. The Fe–Se bond lengths lie in the range 235 to 240 pm, with corresponding Fe–Fe bond lengths of 254 to 256 pm. The 77Se NMR data of the new complexes are discussed and compared with the corresponding data of related complexes.  相似文献   

10.
Yolk–shell‐structured Zn–Fe–S multicomponent sulfide materials with a 1:2 Zn/Fe molar ratio were prepared applying a sulfidation process to ZnFe2O4 yolk–shell powders. The Zn–Fe–S powders had mixed sphalerite (Zn,Fe)S and hexagonal FeS crystal structures. The discharge capacities of the Zn–Fe–S powders sulfidated at 350 °C at a constant current density of 500 mA g?1 for the first, second, and fiftieth cycles were 1098, 912, and 913 mA h g?1, respectively. The powders exhibited a high discharge capacity of 602 mA h g?1 even at the high current density of 10 A g?1. The synergistic effect of yolk–shell structure and multicomponent composition improved the electrochemical properties of Zn–Fe–S powders.  相似文献   

11.
The photochemical exchange of all three carbonyl ligands with acetonitrile converts tricarbonyliron–diene complexes into the very labile triacetonitrile-iron–diene complexes. These easily demetalate in high yields to the corresponding free ligands on injection of air at −30°C [Eq. (1)]. The novel demetalation procedure is applied to the tricarbonyliron complexes of cyclopentadienones, cyclohexa-1,3-dienes, and buta-1,3-dienes.  相似文献   

12.
13.
The reaction of [Cp′Cr(CO)2(μ-SBu)]2 (1) (Cp′ = MeC5H4) with (PPh3)2Pt(PhCCPh) gives Cp′Cr(CO)2(μ-SBu)Pt(PPh3)2 (2) which could be regarded as a product of the substitution of acetylene ligand at platinum by a monomeric chromium–thiolate fragment. According to the X-ray diffraction analysis 2 contains single Cr–Pt (2.7538(15)) and Pt–S (2.294(2) Å) bonds while Cr–S bond (2.274(3) Å) is shortened in comparison with ordinary Cr–S bonds (2.4107(4)–2.4311(4) Å) in 1. The bonding between Cr–S fragment and platinum atom is similar to the olefine coordination in their platinum complexes.  相似文献   

14.
In our ongoing development of ferrocene ligands, 1‐dimethylamino‐2‐(diphenylphosphinothioyl)ferrocene is being used as a convenient building block to obtain racemic or enantiomerically pure ligands. Using this building block in large excess allowed the formation of several by‐products, two of which have already been reported; the structure of a third by‐product, namely 1‐(diphenylphosphinothioyl)‐2‐{[(diphenylphosphinothioyl)sulfanyl]methyl}ferrocene, [Fe(C5H5)(C30H25P2S3)], is presented here. The crystal structure is built up from a ferrocene unit, with one of the cyclopentadienyl (Cp) rings substituted in the 1‐ and 2‐positions by a protected diphenylphosphinothioyl group and a [(diphenylphosphinothioyl)sulfanyl]methyl fragment, –CH2SP(=S)Ph2. There are C—H...S interactions which result in the formation of chains parallel to the c axis. After desulfurization, the crude material was then reacted with Pd and Pt (M) precursors [MCl2(CH3CN)2] to yield two isostructural dinuclear complexes arranged around twofold axes, namely (R,R/S,S)‐bis{μ‐[2‐(diphenylphosphanyl)ferrocen‐1‐yl]methanethiolato‐κ3P,S:S}bis[chloridopalladium(II)] pentane disolvate, [Pd2{Fe(C5H5)(C18H15PS)}2Cl2]·2C5H12, and the platinum(II) analogue, (R,R/S,S)‐bis{μ‐[2‐(diphenylphosphanyl)ferrocen‐1‐yl]methanethiolato‐κ3P,S:S}bis[chloridoplatinum(II)] toluene monosolvate, [Pt2{Fe(C5H5)(C18H15PS)}2Cl2]·C7H8, in which the two metal atoms present a slightly distorted square‐planar geometry formed by two bridging S atoms and P and Cl atoms. The P,S‐chelating ligand results from the rupture of one of the P—S bonds in the starting ligand. These dinuclear complexes display a butterfly geometry. Surprisingly, only the (R,R/S,S) diastereoisomer has been isolated.  相似文献   

15.
Many transition-metal complexes mediate DNA oxidation in the presence of oxidizing radiation, photosensitizers, or oxidants. The DNA oxidation products depend on the nature of the metal complex and the structure of the DNA. Earlier we reported trans-d,l-1,2-diaminocyclohexanetetrachloroplatinum (trans-Pt(d,l)(1,2-(NH(2))(2)C(6)H(10))Cl(4), [Pt(IV)Cl(4)(dach)]; dach = diaminocyclohexane) oxidizes 2'-deoxyguanosine 5'-monophosphate (5'-dGMP) to 7,8-dihydro-8-oxo-2'-deoxyguanosine 5'-monophosphate (8-oxo-5'-dGMP) stoichiometrically. In this paper we report that [Pt(IV)Cl(4)(dach)] also oxidizes 2'-deoxyguanosine 3'-monophosphate (3'-dGMP) stoichiometrically. The final oxidation product is not 8-oxo-3'-dGMP, but cyclic (5'-O-C8)-3'-dGMP. The reaction was studied by high-performance liquid chromatography, (1)H and (31)P nuclear magnetic resonance, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The proposed mechanism involves Pt(IV) binding to N7 of 3'-dGMP followed by nucleophilic attack of a 5'-hydroxyl oxygen to C8 of G and an inner-sphere, 2e(-) transfer to produce cyclic (5'-O-C8)-3'-dGMP and [Pt(II)Cl(2)(dach)]. The same mechanism applies to 5'-d[GTTTT]-3', where the 5'-dG is oxidized to cyclic (5'-O-C8)-dG. The Pt(IV) complex binds to N7 of guanine in cGMP, 9-Mxan, 5'-d[TTGTT]-3', and 5'-d[TTTTG]-3', but no subsequent transfer of electrons occurs in these. The results indicate that a good nucleophilic group at the 5' position is required for the redox reaction between guanosine and the Pt(IV) complex.  相似文献   

16.
Extensive study of the electronic structure of Fe‐NO complexes using a variety of spectroscopic methods was attempted to understand how iron controls the binding and release of nitric oxide. The comparable energy levels of NO π* orbitals and Fe 3d orbitals complicate the bonding interaction within Fe? NO complexes and puzzle the quantitative assignment of NO oxidation state. Enemark–Feltham notation, {Fe(NO)x}n, was devised to circumvent this puzzle. This 40‐year puzzle is revisited using valence‐to‐core X‐ray emission spectroscopy (V2C XES) in combination with computational study. DFT calculation establishes a linear relationship between ΔEσ2s*‐σ2p of NO and its oxidation state. V2C Fe XES study of Fe? NO complexes reveals the ΔEσ2s*‐σ2p of NO derived from NO σ2s*/σ2p→Fe1s transitions and determines NO oxidation state in Fe? NO complexes. Quantitative assignment of NO oxidation state will correlate the feasible redox process of nitric oxide and Fe‐nitrosylation biology.  相似文献   

17.
The novel host–guest compound [Cs6Cl][Fe24Se26] (I4/mmm; a=11.0991(9), c=22.143(2) Å) was obtained by reacting Cs2Se, CsCl, Fe, and Se in closed ampoules. This is the first member of a family of compounds with unique Fe–Se topology, which consists of edge‐sharing, extended fused cubane [Fe8Se6Se8/3] blocks that host a guest complex ion, [Cs6Cl]5+. Thus Fe is tetrahedrally coordinated and divalent with strong exchange couplings, which results in an ordered antiferromagnetic state below TN=221 K. At low temperatures, a distribution of hyperfine fields in the Mössbauer spectra suggests a structural distortion or a complex spin structure. With its strong Fe–Se covalency, the compound is close to electronic itinerancy and is, therefore, prone to exhibit tunable properties.  相似文献   

18.
A series of nitrosyl complexes of empirical formula Kn[M(CN)5NO], where M = V, Cr, Mn and Co and n = 3, or M = Mo and n = 4, have been prepared which are notional analogues of the widely used vasodilator sodium nitroprusside. Their reactivity towards common nucleophiles (OH?, NH2R, NHR2, HS? and RS?), acid and photolysis has been investigated to elucidate the desired properties required of new metal nitrosyls which may have some potential as new non-cyanide-based vasodilators.  相似文献   

19.
The 16 electron ruthenium complexes [(η6-1-isopropyl-4-methyl-benzene)(X-N)Ru(II)], where X-N is 2-amido-1-ethoxide (2), 1-N-p-tosyl-1,2-diamido-ethane (3), 1-N-p-tosyl-1,2-diamido-benzene (7), 1-N-(p-tosyl)-1,2-diamido-1,1,2,2-tetramethyl-ethane (8) and 1-N-(p-tosyl)-1,2-diamido-meso-1,2-diphenyl-ethane (9) have been evaluated as catalysts for the transfer dehydrogenation of secondary alcohols to ketones in acetone and/or cyclohexanone solvent. Complexes 2 and 3 cannot be isolated and decompose under these conditions. In contrast complexes 7, 8 and 9 are supported by ligands designed to resist β-hydride elimination and can with the exclusion of oxygen be held in solution for weeks. Complex 7 is not active as a catalyst. Complexes 8 and 9 are highly air-sensitive and active as catalysts for transfer (de)hydrogenations under oxidizing and reducing conditions, respectively. There is no coordinative inhibition of the catalysts by the ketone solvent under oxidizing conditions, but both catalysts show a correlation between the reaction rates and the ΔG values of the reactions with reactions leading to α, β-unsaturated ketones proceeding faster. For all alcohol/ketone substrate pairs where the ketone is not α, β-unsaturated, the hydrogenation reactions under reducing conditions (iso-propanol solvent) are at least one order of magnitude faster than the corresponding dehydrogenation reaction under oxidizing conditions (acetone solvent).  相似文献   

20.
The Cu–sarcosine–OH and Cd–MIDA–OH systems have been studied by differential pulse polarography (DPP) at a fixed total ligand to total metal concentration ratio and varied pH at 298 K and μ=0.5 mol dm−3 in the background of NaNO3. Both the metal–ligand systems show initially dynamic (labile), followed by semi-dynamic behaviour on the DPP time scale. It has been shown that the experimental and calculated DPP complex formation curves used previously only for labile metal–ligand systems can be employed for the modelling of all species formed in a solution and optimisation of their stability constants. The stability constants of ML and ML2 complexes as log β were estimated for CuII and CdII as 7.75±0.02, 14.49±0.01 and 6.67 ±0.02, 12.00±0.02, respectively (all known hydroxide species of copper and cadmium, including polynuclear species, were incorporated into the metal–ligand–OH systems). The formation of the complex CuL2(OH) is suggested also and its stability constant as log β has been estimated to be 16.2±0.2. Results reported here seem to be reasonable when compared with the literature data reported at 298 K and different ionic strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号