首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
介绍了自行研制的辐射仪器的光谱模块,其光谱范围覆盖可见-短波红外波段(400 nm~2 500 nm),讨论了光谱模块的装调方法并对装调结果进行了分析研究。辐射仪器由3个光谱模块组成,分别是可见波段光谱模块(400 nm~1 000 nm),近红外波段光谱模块(900 nm~1 700 nm)和短波红外波段光谱模块(1 600 nm~2 500 nm),光谱模块的探测单元均以平场凹面光栅分光,线阵探测器探测信号,光谱模块的光机组件主要包括光纤头、狭缝、反射镜组件、光栅组件和探测器组件等。鉴于光谱模块的光机装调效果与其光机设计息息相关,装调结果的好坏能反映光机设计的优劣,针对光谱模块的光机设计特点进行了光机装调。光机装调分析结果表明:3个光谱模块的波长分辨率分别优于4 nm,15 nm和20 nm,达到了仪器的设计指标,验证了光机设计、装调的合理性。  相似文献   

2.
根据军用光学仪器的使用要求,在多光谱ZnS基底上镀制增透膜,要求薄膜在可见与近红外波段400~1000 nm及远红外波段7~11 μm的平均透射率均大于90%.采用电子束真空镀膜的方法并加以离子辅助沉积系统,通过选择ZnS和YbF3作为高低折射率材料,利用最新OptilLayer软件三大模块的功能辅助,调整镀膜工艺参数,改进监控方法,减少膜厚控制误差,在多光谱ZnS基底上成功镀制符合使用要求的增透膜.所镀膜层在可见与近红外波段400~1000 nm的平均透射率大于91%,远红外波段7~11μm的平均透射率大于90%,能够承受恶劣的环境测试,完全满足军用光学仪器的使用要求.  相似文献   

3.
王宁  朱永  韦玮  陈建君  李平  文玉梅 《物理学报》2012,61(3):38801-038801
利用严格耦合波理论分析了纳米孔阵列薄膜的光学特性,提出将纳米孔阵列薄膜作为光伏器件 增透膜来提高器件的光吸收和转换效率.理论分析表明:纳米孔阵列薄膜比单层增透膜有更好的增透效果, 能够更好地提高光伏器件的转换效率,在400 nm-600 nm波段尤为显著.纳米孔阵列薄膜的最优结构参数: 周期为500 nm,填充率为0.2,厚度为110 nm.采用微纳加工技术,在Φ 200 μm Si 探测器的增透膜上制作了不同周期的纳米孔阵列,并搭建了相应的测试系统.实验结果表明: 周期为500 nm时器件的性能提高最为明显,短路电流在400 nm-1100 nm波段提高约为6%, 在400 nm-600 nm波段提高约为15%;开路电压提高约为2%.纳米孔阵列薄膜能够很好地提高光伏器件 的转换效率.  相似文献   

4.
为了满足基于低温辐射计的115 nm~400 nm波段探测器绝对光谱响应度高精度标定的需求,研制了一种由斩波片、转轴、伺服电机、U型光电开关、降温组件、支架和控制电路等组成的适用于真空环境的光学斩波器,使其在真空低温环境下将微弱的真空紫外-紫外辐射信号调制为频率已知的交变辐射信号,并由锁相放大器进行测量。实验结果表明,该光学斩波器的频率在80 Hz时的稳定性为±0.05 Hz,满足115 nm~400 nm波段探测器绝对光谱响应度标定对斩波器在10^(-4) Pa的真空环境下的使用要求。  相似文献   

5.
设计并研制了基于声光晶体的1 300~3 400nm波段超宽带减反射膜.运用电子束真空沉积系统,采用双材料共蒸发技术,解决了膜系设计时所需材料的折射率匹配和相应波段膜层吸收的问题,吸收在工作波段减少到0.7%.在共蒸发过程中,先沉积蒸发速率不稳定的材料,待蒸发速率稳定后,同时沉积另一种蒸发速率较稳定的材料,可提高共蒸发时两种材料的质量配比准确度从而获得所需要的折射率.制备的薄膜在所需波段平均透射率大于96%,薄膜满足相应的环境检测要求.  相似文献   

6.
以声光晶体TeO_2为衬底,设计并研制了1 300~3 400nm波段超宽带减反射膜.从薄膜热应力理论出发,建立膜层热应力受力示意图,结合TeO_2晶体的特性和力矩判定方法,采用解析法逆向计算分析薄膜材料的热膨胀系数及杨氏模量.实验验证表明:所制备的膜层附着力在1300~3400nm波段平均透过率为96.8%;在相同工艺条件下,采用连接层所制备的薄膜附着力更好,可以解决脱膜问题,满足相应的附着力检测要求.  相似文献   

7.
低损耗193 nm增透膜   总被引:2,自引:0,他引:2       下载免费PDF全文
尚淑珍  邵建达  范正修 《物理学报》2008,57(3):1946-1950
计算了适用于193nm增透膜设计与制备的基底与薄膜材料的光学常数,并在此基础上对193nm增透膜进行了设计、制备与性能分析.发现基底材料的吸收损耗对增透膜元件的影响很大,超过一定值时,增透膜元件的设计透过率将达不到理想水平.对单面增透膜的设计与制备结果表明,当吸收损耗降低到一定程度,散射损耗成为不可忽略的因素.采用热舟蒸发方法实现了性能良好的193 nm减反射膜,剩余反射率在0.2%以下. 关键词: 193nm 增透膜 光学损耗 剩余反射率  相似文献   

8.
宽波段太阳辐照度仪采用fèry棱镜分光,利用线阵CCD反馈控制光谱扫描,波长覆盖范围为400~2 500nm.为实现该仪器的高准确度光谱定标,在实验室内利用单波长激光器和OPO激光器分别作为光源.通过光谱扫描,得出定标波长与CCD像元的对应关系.根据棱镜参量和光路设计参量推导出全波段内光谱定标方程,实现全波段光谱定标.通过与其他特征波长比较,分析得出光谱定标合成不确定度优于0.5nm.用定标好的仪器进行室外测量,将测量结果与大气辐射传输软件modtran4模拟结果相比对,可得实际测量的大气吸收峰与模拟结果一致.将该方法在红外波长区域定标结果与传统的多项式拟合光谱定标方法对比,显示该定标结果优于传统多项式拟合方法.证明该定标方法的正确性和仪器设计的合理性.  相似文献   

9.
PMMA光纤辐照特性研究   总被引:1,自引:0,他引:1  
葛文萍 《光子学报》2005,34(10):1573-1576
分析了聚合物光纤在辐照环境下的物理化学变化,实验研究了聚甲基丙烯酸甲脂(PMMA)光纤在不同剂量的γ射线辐照下的辐照损伤和恢复特性,测量了PMMA光纤在可见光波段的辐照光谱和恢复光谱以及在638 nm的辐照前后透过率及辐照损伤.测量结果表明,光纤的辐照损伤和恢复都有波长相关性,辐照剂量低于5 kGy,PMMA光纤在整个可见光波段的辐照损伤情况差别不大,辐照剂量超过5 kGy,PMMA光纤在400 nm~550 nm波段的辐照损伤比600 nm~800 nm的辐照损伤要严重.  相似文献   

10.
红外波段复合消色差1/4波片的优化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
郑春红  朱化凤  宋连科 《应用光学》2011,32(6):1222-1226
 在三元复合式消色差波片设计的基础上,对拓宽消色差范围的重要因素——单波片延迟量和复合角度进行了进一步分析和测试,提出了优化设计方案;利用石英晶体设计了适用于红外光通信波段的复合消色差波片。理论和实验均表明:通过调整单波片延迟量或改变复合角度可使该波片在中心波长为1 400 nm的900 nm~1 800 nm波长范围内最大延迟偏差≤5%,而在光通信波段(1 200 nm~1 600 nm)该复合波片的最大延迟偏差只有3.2%。  相似文献   

11.
对矩形波宽带通滤光片进行了深入研究,提出了一种设计、制备矩形波宽带通滤光片的方法。使用该方法设计并制备了400 nm~1 100 nm波段,中心波长λ0=515 nm,透射带λ=λ0±25 nm,透射带平均透射率■≥92%,截止带λ=400 nm~475 nm、λ=555 nm~1 100 nm,截止带透射率小于0.1%的矩形波宽带通OD3-A滤光片。对样片光谱进行了测试,结果满足需求。该方法设计、制备矩形波宽带通滤光片克服了F-P型窄带滤光膜监控精度要求高、通带宽带窄、成本高以及传统长、短波截止膜组合方式膜层总厚度过大、通带透过率低、波形矩形度差的缺点。  相似文献   

12.
为了解决现有光学塑料镜片表面易划伤、高温时容易发生膜裂的问题,选取机械性能稳定的Ti3O5、SiO2作为高、低折射率材料,依据光学薄膜理论,采用TFCalc软件设计膜系,通过电子束加热蒸发和离子源辅助沉积薄膜,在膜系的最外层用电阻加热法镀制防水膜。通过选择新材料SV-55作为连接层,增强了塑料镜片与膜层的附着力,解决了膜系与塑料镜片膨胀系数不匹配的问题,提高了塑料镜片的抗温能力。通过优化工艺参数,得到400 nm~700 nm反射率R≤1%的绿色减反膜。测试结果显示,研制的薄膜具有耐摩擦、抗老化、防水和防油污的特性。  相似文献   

13.
 为了提高砷化镓(GaAs)多结太阳电池的光电转换效率,设计了宽光谱(300 nm~1 800 nm)ZnS/Al2O3/MgF2三层减反射膜,分析了各层的厚度及折射率对三层膜系有效反射率的影响。结果表明: 对于整个波长,ZnS厚度对有效反射率的影响要大于Al2O3和MgF2,MgF2厚度对有效反射率的影响最小;适当减小MgF2的折射率或增加ZnS的折射率可得到更低的有效反射率。同时,当 ZnS,Al2O3和MgF2的最优物理厚度分别为52.77 nm,82.61 nm,125.17 nm时,此时最小有效反射率为2.31%。  相似文献   

14.
徐晓峰  张凤山  范滨 《光学学报》2004,24(9):173-1176
阐述了利用非均匀膜系理论设计宽角度多层减反射薄膜的方法 ,从理论上分析了在宽角度的情况下 ,偏振光产生透过率不同的原因 ,选取了Ta2 O5和SiO2 两种材料作为折射率材料 ,选取BK7作为基底材料模拟设计了光谱区在 6 0 0~ 70 0nm波段、入射角为 0°~ 80°之间的宽角度多层减反射薄膜 ,探索出了一条新型膜系设计的途径 ,其优化结果是较为理想的。这一研究方法如能在太阳能、光纤通信、航天、激光等领域应用 ,将大大地提高光能的利用率 ,具有重要的应用价值。  相似文献   

15.
于甄  郝怀庆 《应用光学》2012,33(1):153-158
给出了一种全新的膜系设计方法,该方法与目前常用的偏振分束器PBS分光镜所采用的多组膜堆周期膜系的设计方法有着本质上的区别。全新的PBS膜系的设计引入一种有序对偶递变方法,它是基于周期性有序地变换成递变非周期性设计,目的是扰动针对45入射布鲁斯特角的敏感。采用了两种折射率材料光学厚度的递变,在SF75系列玻璃棱镜内部入射光能满足45角(5~6)变化、P偏振态的透射率平均不低于70%、S偏振态的反射率不高于99.6%的光学特征指标,而且偏振截止带的带宽可以扩展到400 nm~700 nm。简化了工艺难度,大幅度缩减镀膜时间,降低了投影显示器件制造成本,并提高了光学特征指标。  相似文献   

16.
纳米孔隙聚合物光学薄膜透过率谱线的数值计算   总被引:3,自引:2,他引:1  
用时域有限差分(Finite Difference Time Domain-FDTD)算法模拟了光从真空垂直入射到表面覆盖有一层纳米孔隙聚合物薄膜的玻璃介质,得到了在不同波长下的纳米孔隙薄膜的透过率谱线.将FDTD模拟结果的透过率谱线与理论谱线相对照,估算出了该薄膜的等效折射率.我们分别模拟了孔隙率为5%、10%、15%、20%和30%的薄膜,得到了它们的透过率谱线,而且利用这些谱线得到了它们不同的等效折射率值.文末给出了只有两层薄膜构成的纳米孔隙宽带增透薄膜的结构,而且利用FDTD算法模拟了光经过这种增透膜入射到玻璃介质的过程,结果显示这种增透膜在可见光波长范围的透过率高达99.5%.  相似文献   

17.
研究了不同尺寸SiO2胶体微球形成纳米结构薄膜的光学传输特性和光子带隙。通过在玻璃基底上自组装透光的SiO2胶体微球形成胶体晶体薄膜, 依据布拉格定律,分析微球尺寸对胶体晶体光子带隙的影响。为实现可见光波段的全方位减反射,提出通过改变胶体粒径将胶体晶体带隙位置移动至紫外波段,理论计算得出当粒径为112 nm,占空比为0.45时能实现可见光波段0.5%的平均反射率。实验结果表明,玻璃基底在400~800 nm间的平均反射率从4.3%降低至0.7%,最小反射率达0.3%。通过控制微球粒径移动光子带隙位置,优化晶体结构参数实现了可见光波段的减反射,有效提高了光学组件对可见光的利用率。  相似文献   

18.
Graded-index ZrO2 films has been fabricated on K9 glass by glancing angle deposition. Because the index mismatch at the interface has been reduced, the film results in wideband high-transmission antireflection. From 400nm to 1200nm, the film reflection is lower than 0.8% and the lowest value is 0.2% at 432nm.  相似文献   

19.
薄膜截止滤光片的消偏振设计   总被引:3,自引:2,他引:1  
顾培夫  陈卫斌  刘旭 《光学学报》2005,25(2):74-278
薄膜截止滤光片在倾斜入射时不可避免地会产生s和p二个偏振分量的分离,因而在许多应用,特别是光通讯的应用中成为一个棘手的难题。提出了一种新的设计方法,对最常用的45°入射角,实现了长波通和短波通两种截止滤光片的完全消偏振, 在透射率为50%处,其偏振分离分别为0.3 nm和0.1 nm。基本的设计方法是采用宽带法布里珀罗薄膜干涉滤光片中心波长两侧的干涉带作为长波通或短波通截止滤光片的初始膜系,然后经过适当的优化以提高透射带的透射率。宽带干涉滤光片的间隔层常由半波长厚度的高、低折射率混合膜层组成,如2H2L2H或2L2H2L。由于这种设计的截止区和透射带带宽常嫌不足,故提出了展宽截止区和透射带的方法。对一个典型的短波通截止滤光片,在波长1550 nm,截止区和透射带宽均达到了200 nm。这种设计方法不仅简单、性能优良,而且膜厚控制容差较大,故易于制造。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号