首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ability to induce and amplify motion at the molecular scale has seen tremendous progress ranging from simple molecular rotors to responsive materials. In the two decades since the discovery of light-driven rotary molecular motors, the development of these molecules has been extensive; moving from the realm of molecular chemistry to integration into dynamic molecular systems. They have been identified as actuators holding great potential to precisely control the dynamics of nanoscale devices, but integrating molecular motors effectively into evermore complex artificial molecular machinery is not trivial. Maximising efficiency without compromising function requires conscious and judicious selection of the structures used. In this perspective, we focus on the key aspects of motor design and discuss how to manipulate these properties without impeding motor integrity. Herein, we describe these principles in the context of molecular rotary motors featuring a central double bond axle and emphasise the strengths and weaknesses of each design, providing a comprehensive evaluation of all artificial light-driven rotary motor scaffolds currently present in the literature. Based on this discussion, we will explore the trajectory of research into the field of molecular motors in the coming years, including challenges to be addressed, potential applications, and future prospects.

Various families of light-driven rotary molecular motors and the key aspects of motor design are discussed. Comparisons are made between the strengths and weaknesses of each motor. Challenges, applications, and future prospects are explored.  相似文献   

2.
This feature article describes the progress realized over the past half century in the field of surface-bound gradient structures created on or from soft materials (oligomers and/or polymers), or those enabling the study of the behavior of soft materials. By highlighting our work in the field and accounting for the contribution of other groups, we emphasize the exceptional versatility of gradient assemblies in facilitating fast screening of physicochemical phenomena, acting as "recording media" for monitoring a process, and playing a key role in the design and fabrication of surface-bound molecular and macromolecular motors capable of directing a transport phenomenon.  相似文献   

3.
Guillaume Vives 《Tetrahedron》2008,64(50):11462-11468
This article focuses on the synthesis of a family of rotary molecular motors based on a penta-substituted cyclopentadienyl tris(indazolyl)borate ruthenium(II) complex. In order to demonstrate a movement of rotation in this family of molecular motors, dissymmetric derivatives with one ferrocene missing have also been synthesized. The molecules have been prepared with ester and thioether-functionalized tris(indazolyl)borate ligands in view of studying them as single molecules on various surfaces by STM or AFM techniques.  相似文献   

4.
We report fuel generation systems for molecular motors based on pyruvate kinase, or for the first time, mitochondria, implemented within microfluidic devices. Intact organelles acted as bio-nanopower supplies for molecular motors, using isolated mitochondria to convert chemical energy from succinate to ATP, harnessing nature's enzymatic transformation cascades directly. Motors were activated essentially equally by ATP produced by pyruvate kinase, mitochondria, or direct addition of ATP.  相似文献   

5.
Molecular motors capable of directional track-walking or rotation are abundant in living cells, and inspire the emerging field of artificial nanomotors. Some biomotors can convert 90% of free energy from chemical fuels into usable mechanical work, and the same motors still maintain a speed sufficient for cellular functions. This study exposed a new regime of universal optimization that amounts to a thermodynamically best working regime for molecular motors but is unfamiliar in macroscopic engines. For the ideal case of zero energy dissipation, the universally optimized working cycle for molecular motors is infinitely slow like Carnot cycle for heat engines. But when a small amount of energy dissipation reduces energy efficiency linearly from 100%, the speed is recovered exponentially due to Boltzmann's law. Experimental data on a major biomotor (kinesin) suggest that the regime of universal optimization has been largely approached in living cells, underpinning the extreme efficiency-speed trade-off in biomotors. The universal optimization and its practical approachability are unique thermodynamic advantages of molecular systems over macroscopic engines in facilitating motor functions. The findings have important implications for the natural evolution of biomotors as well as the development of artificial counterparts.  相似文献   

6.
Molecular switches and motors are essential components of artificial molecular machines. In this perspective, we discuss progress in our design, synthesis, and functioning of photochemical and electrochemical switches and chemical and light-driven molecular motors. Special emphasis is given to the control of a range of functions and properties, including luminescence, self-assembly, motion, color, conductance, transport, and chirality. We will also discuss our efforts to control mechanical movement at the molecular level, a feature that is at the heart of molecular motors and machines. The anchoring of molecular motors on surfaces and molecular motors at work are discussed.  相似文献   

7.
8.
Novel single‐molecule techniques allow the observation of single‐molecular motors in real time under physiological conditions. This enables one to gain previously inaccessible information about the mechanics of molecular motors, especially their mechano‐chemical coupling. As an example, we discuss the DNA import motor of the bacteriophage ?29 and protein import into chloroplasts. In contrast to these highly developed biological molecular motors, artificial molecular motors are still at an early stage of development. Nevertheless, they already give a wealth of information. Our review focuses on how the investigation of artificial and biological molecular motors can mutually enrich each other.  相似文献   

9.
In biology, nucleic acids are carriers of molecular information: DNA's base sequence stores and imparts genetic instructions, while RNA's sequence plays the role of a messenger and a regulator of gene expression. As biopolymers, nucleic acids also have exciting physicochemical properties, which can be rationally influenced by the base sequence in myriad ways. Consequently, in recent years nucleic acids have also become important building blocks for bottom-up nanotechnology: as molecules for the self-assembly of molecular nanostructures and also as a material for building machinelike nanodevices. In this Review we will cover the most important developments in this growing field of nucleic acid nanodevices. We also provide an overview of the biochemical and biophysical background of this field and the major "historical" influences that shaped its development. Particular emphasis is laid on DNA molecular motors, molecular robotics, molecular information processing, and applications of nucleic acid nanodevices in biology.  相似文献   

10.
En route to surface-bound electric field-driven molecular motors   总被引:1,自引:0,他引:1  
Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.  相似文献   

11.
分子马达运动的“动因”是研究分子马达的关键问题.目前无论是线性分子马达还是旋转分子马达的研究,由分子马达构象变化引起整个分子马达运动的理论得到普遍认可.分子马达与高能物质(特别是含磷物质)发生构象变化,例如ATP与分子马达部件上氨基酸的弱结合(Weak binding)、强结合(Binding)及释放(Release)等引起的构象变化,往往被用来解释分子马达运动的原因.其化学机理国际  相似文献   

12.
Inspired by human vision, a diverse range of light-driven molecular switches and motors have been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc. The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.  相似文献   

13.
具有分子机器、分子开关功能的自组装超分子体系   总被引:6,自引:0,他引:6  
本文介绍了具有分子梭或分子开关性质的新型轮烷和索烃超分子以及具有分子机器功能的其它类型化学和生物分子的国际研究最新动态。  相似文献   

14.
The bottom-up construction and operation of machines and motors of molecular size is a topic of great interest in nanoscience, and a fascinating challenge of nanotechnology. Researchers in this field are stimulated and inspired by the outstanding progress of molecular biology that has begun to reveal the secrets of the natural nanomachines which constitute the material base of life. Like their macroscopic counterparts, nanoscale machines need energy to operate. Most molecular motors of the biological world are fueled by chemical reactions, but research in the last fifteen years has demonstrated that light energy can be used to power nanomachines by exploiting photochemical processes in appropriately designed artificial systems. As a matter of fact, light excitation exhibits several advantages with regard to the operation of the machine, and can also be used to monitor its state through spectroscopic methods. In this review we will illustrate the design principles at the basis of photochemically driven molecular machines, and we will describe a few examples based on rotaxane-type structures investigated in our laboratories.   相似文献   

15.
Nine new molecular motors, consisting of a 2,3-dihydro-2-methylnaphtho[2,1-b]thiopyran or 2,3-dihydro-3-methylphenanthrene upper part and a (thio)xanthene, 10,10-dimethylanthracene, or dibenzocycloheptene lower part, connected by a central double bond, were synthesized. A single stereogenic center, bearing a methyl substituent, is present in each of the motors. MOPAC93-AM1 calculations, NMR studies, and X-ray analysis revealed that these compounds have stable isomers with pseudoaxial orientation of the methyl substituent and less-stable isomers with pseudoequatorial orientation of the methyl substituent. The photochemical and thermal isomerization processes of the motors were studied by NMR and CD spectroscopy. The new molecular motors all show two cis-trans isomerizations upon irradiation, each followed by a thermal helix inversion, resulting in a 360 degrees rotation around the central double bond of the upper part with respect to the lower part. The direction of rotation is controlled by a single stereogenic center created by the methyl substituent at the upper part. The speed of rotation, governed by the two thermal steps, was adjusted to a great extent by structural modifications, with half-lives for the thermal isomerization steps ranging from t(1/2)(theta) 233-0.67 h. The photochemical conversions of two new motors proceeded with near-perfect photoequilibria of 1:99.  相似文献   

16.
Molecular motors are fascinating nanomachines. However, constructing smart materials from such functional molecules presents a severe challenge in material science. Here, we present a bottom-up layer-by-layer assembly of oriented overcrowded-alkene molecular motors forming a crystalline metal–organic framework thin film. While all stator parts of the overcrowded-alkene motors are oriented perpendicular to the substrate, the rotors point into the pores, which are large enough allowing for the light-induced molecular rotation. Taking advantage of the thin film's transparency, the motor rotation and its activation energy are determined by UV/Vis spectroscopy. As shown by gravimetric uptake experiments, molecular motors in crystalline porous materials are used, for the first time, to control the adsorption and diffusion properties of guest molecules in the pores, here, by switching with light between the (meta-)stable states. The work demonstrates the potential of designed materials with molecular motors and indicates a path for the future development of smart materials.  相似文献   

17.
Biomolecular motors, in particular motor proteins, are ideally suited to introduce chemically powered movement of selected components into devices engineered at the micro- and nanoscale level. The design of such hybrid "bio/nano"-devices requires suitable synthetic environments, and the identification of unique applications. We discuss current approaches to utilize active transport and actuation on a molecular scale, and we give an outlook to the future.  相似文献   

18.
The authors describe their study of molecular systems suited to the fabrication of machines and (rotory or linear) motors at the molecular level. They indicate that a future application of these molecular'muscles'could be in the area of information storage and processing.  相似文献   

19.
Movement is intrinsic to life. Biologists have established that most forms of directed nanoscopic, microscopic and, ultimately, macroscopic movements are powered by molecular motors from the dynein, myosin and kinesin superfamilies. These motor proteins literally walk, step by step, along polymeric filaments, carrying out essential tasks such as organelle transport. In the last few years biological molecular walkers have inspired the development of artificial systems that mimic aspects of their dynamics. Several DNA-based molecular walkers have been synthesised and shown to walk directionally along a track upon sequential addition of appropriate chemical fuels. In other studies, autonomous operation--i.e. DNA-walker migration that continues as long as a complex DNA fuel is present--has been demonstrated and sophisticated tasks performed, such as moving gold nanoparticles from place-to-place and assistance in sequential chemical synthesis. Small-molecule systems, an order of magnitude smaller in each dimension and 1000× smaller in molecular weight than biological motor proteins or the walker systems constructed from DNA, have also been designed and operated such that molecular fragments can be progressively transported directionally along short molecular tracks. The small-molecule systems can be powered by light or chemical fuels. In this critical review the biological motor proteins from the kinesin, myosin and dynein families are analysed as systems from which the designers of synthetic systems can learn, ratchet concepts for transporting Brownian substrates are discussed as the mechanisms by which molecular motors need to operate, and the progress made with synthetic DNA and small-molecule walker systems reviewed (142 references).  相似文献   

20.
The introduction of dibenzocyclohepten-5-ylidene as part of a unidirectional light-driven molecular motor allows a more complete picture of the pathway of thermal helix inversion to be developed. The most stable conformation is similar to that found in related motors in that it has, overall, an anti-folded structure with the substituent at the stereogenic centre adopting an axial orientation. Photochemical cis/trans isomerisation at -40 degrees C results in the formation of an isomer in a syn-folded conformation with the methyl group in an axial orientation. This contrasts with previous studies on related molecular rotary motors. The conformation of the higher energy intermediate typically observed for this class of compound is the anti-folded conformation, in which the methyl group is in an equatorial orientation. This conformation is available through an energetically uphill upper half ring inversion of the observed photochemical product. However, this pathway competes with a second process that leads to the more stable anti-folded conformation in which the methyl group is oriented axially. It has been shown that the conformations and pathways available for second-generation molecular motors can be described by using similar overall geometries. Differences in the metastable high-energy species are attributable to the relative energy and position on the reaction coordinate of the transition states. Kinetic studies on these new molecular motors thus provide important insights into the conformational dynamics of the rotation cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号