首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four stanna-closo-dodecaborate complexes of ruthenium have been prepared and characterized by multinuclear NMR studies in solution and in the solid state. The solid-state structures of the dimeric zwitterions [[Ru(dppb)(SnB11H11)]2] (2) (dppb = bis(diphenylphosphino)butane), [[Ru(PPh3)2(SnB11H11)]2] (3), and the dianionic ruthenium complex [Bu3MeN]2[Ru(dppb)[2,7,8-(mu-H)3-exo-SnB11H11](SnB11H11)] (4) were determined by X-ray crystal structure analysis; they establish an unprecedented structural motif in the chemistry of heteroboranes and transition-metal fragments with the stanna-closo-dodecaborate moiety as a two-faced ligand that exhibits eta1(Sn) as well as eta3(B-H) coordination. The eta3-coordinated stannaborate in 4 and in the isostructural compound [Bu3MeN]2[Ru(PPh3)2[2,7,8-(mu-H)3-exo-SnB11H11](SnB11H11)] (5) shows fluxional behavior, which was studied in detail by using 31P[1H] EXSY and DNMR experiments. The activation parameters for the dynamic process of 5 are given.  相似文献   

2.
Reaction of the stanna-closo-dodecaborate salt [Bu3MeN]2[SnB11H11] with the dimeric ruthenium complex [Ru2(mu-Cl)3(triphos)2]Cl (triphos = {MeC(CH2PPh2)3}) in refluxing acetonitrile yields the zwitterionic compound [Ru(SnB11H11)(MeCN)2(triphos)] (4) which has been characterized by single-crystal X-ray diffraction analysis and solid-state NMR spectroscopy. Refluxing the zwitterion in acetone leads to an eta1(Sn) to eta3(BH) rearrangement with formation of [Ru(SnB1)H11)(triphos)] (5) whose structure has been confirmed by X-ray diffraction and multinuclear NMR spectroscopy in solution and in the solid state. Furthermore, two isomeric zwitterions fac- and mer-[Ru(SnB11H11)(dppb)(MeCN)3] (6a, 6b) and their rearrangement reactions as well as their NMR properties are described.  相似文献   

3.
The tetrasubstituted polyanions of platinum, palladium, and gold [M(SnB(11)H(11))(4)](x-) (x=6, M=Pd, Pt; x=5, M=Au) have been prepared and characterized by single-crystal X-ray diffraction, elemental analysis, IR, Raman, (11)B, and (119)Sn heteronuclear NMR spectroscopy. In the case of the platinum derivative [Bu(3)MeN](6)[Pt(SnB(11)H(11))(4)] (2) (119)Sn M?ssbauer spectroscopy has been carried out. The isolated salts are stable towards moisture and air and the complexes 2 and 3 were treated with 1,3-bis(diphenylphosphino)propane (dppp) to give the respective substitution products [Bu(3)MeN](2)[(dppp)M(SnB(11)H(11))(2)] (M=Pd, Pt).  相似文献   

4.
The synthesis and characterization of three ruthenium complexes [Bu(3)MeN][Ru(PPh(3))(2)(NH(2)-B(12)H(11))Cl], [Bu(4)N][Ru(dppb)(NH(2)-B(12)H(11))Cl] and [RuCO(PPh(3))(2)(NH(2)-B(12)H(11))] with amino-closo-dodecaborate as the coordinating ligand are described.  相似文献   

5.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

6.
Three stannaborate complexes of platinum(II) and a novel stannoborate palladium(II) derivative have been prepared in excellent yield. The tin transition metal bond is formed through nucleophilic substitution and the resulting complexes [Bu3MeN] [trans-[(Et3P)2Pt(SnB11H11)H]] (6), [trans-[(Et3P)2Pt(SnB11H11)(CNtBu)]] (7), [Bu3MeN]2[trans-[(Et3P)2Pt(SnB11H11)2-(CNtBu)]] (8), and [Bu3MeN][(dppe)-Pd(SnB11H11)Me] (12) (dppe = 1,2-bis-(diphenylphosphanyl)ethane) were characterized by NMR spectroscopy and elemental analysis. In the cases of the zwitterion 7, the pentacoordinated complex 9, the palladium salt 12 and [(triphos)Pt(SnB11H11)] (10) (triphos = 1,1,1-tris(diphenylphosphanylmethyl)ethane), their solid-state structures are determined by X-ray crystal structure analyses. The trans influence of the [SnB11H11] ligand is evaluated from the results of the IR spectroscopy and X-ray crystallographic structures of complexes 6, 7, and 12. The dipole moment of the zwitterion 7 is calculated by density functional theory (DFT) methods. The alignment of the dipole moments of the polar molecules 7 and 12 in the solid state is discussed.  相似文献   

7.
Reaction of [Bu(4)N](4)[H(3)PW(11)O(39)] with [Re(NPh)Cl(3)(PPh(3))(2)], in acetonitrile and in the presence of NEt(3), provided the first Keggin-type organoimido derivative [Bu(4)N](4)[PW(11)O(39)(ReNPh)] (Ph = C(6)H(5)) (1). The functionalization was clearly demonstrated by various techniques including (1)H and (14)N NMR, electrochemistry, and ESI mass spectrometry. Conditions for the formation of 1 are also discussed.  相似文献   

8.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

9.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

10.
Treatment of the recently reported potassium salt [K(thf)(n)][N(PPh(2))(2)] (n=1.25, 1.5) with anhydrous yttrium or lanthanide trichlorides in THF leads after crystallization from THF/n-pentane (1:2) to the monosubstituted diphosphanylamide complexes [LnCl(2)[(Ph(2)P)(2)N](thf)(3)] (Ln=Y, Sm, Er, Yb). The single-crystal X-ray structures of these complexes show that the metal atoms are surrounded by seven ligands in a distorted pentagonal bipyramidal arrangement, in which the chlorine atoms are located in the apical positions. The diphosphanylamide ligand is always eta(2)-coordinated through the nitrogen atom and one phosphorus atom. Further reaction of [SmCl(2)[(Ph(2)P)(2)N](thf)(3)] with K(2)C(8)H(8) or reaction of [LnI(eta(8)-C(8)H(8))(thf)(3)] with [K(thf)(n)][N(PPh(2))(2)] in THF gives the corresponding cyclooctatetraene complexes [Ln[(Ph(2)P)(2)N](eta(8)-C(8)H(8))(thf)(2)] (Ln=La, Sm). The single crystals of these compounds contain enantiomerically pure complexes. Both compounds adopt a four-legged piano-stool conformation in the solid state. The structures of the A and the C enantiomers were established by single-crystal X-ray diffraction. The more soluble bistrimethylsilyl cyclooctatetraene complex [Y[(Ph(2)P)(2)N](eta(8)-1,4-(Me(3)Si)(2)C(8)H(6))(thf)(2)] was obtained by transmetallation of Li(2)[1,4-(Me(3)Si)(2)C(8)H(6)] with anhydrous yttrium trichloride in THF followed by the addition of one equivalent of [K(thf)(n)][N(PPh(2))(2)]. The (89)Y NMR signal of the complex is split up into a triplet, supporting other observations that the phosphorus atoms are chemically equivalent in solution and, thus, dynamic behavior of the ligand in solution can be anticipated.  相似文献   

11.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

12.
Yih KH  Lee GH  Wang Y 《Inorganic chemistry》2003,42(4):1092-1100
The doubly bridged pyridine-2-thionate (pyS) dimolybdenum complex [Mo(eta(3)-C(3)H(5))(CO)(2)](2)(mu-eta(1),eta(2)-pyS)(2) (1) is accessible by the reaction of [Mo(eta(3)-C(3)H(5))(CO)(2)(CH(3)CN)(2)Br] with pySK in methanol at room temperature. Complex 1 reacts with piperidine in acetonitrile to give the complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(2)-pyS)(C(5)H(10)NH)] (2). Treatment of 1 with 1,10-phenanthroline (phen) results in the formation of complex [Mo(eta(3)-C(3)H(5))(CO)(2)(eta(1)-pyS)(phen)] (3), in which the pyS ligand is coordinated to Mo through the sulfur atom. Four conformational isomers, endo,exo-complexes [Mo(eta(3)-C(3)H(5))(CO)(eta(2)-pyS)(eta(2)-diphos)] (diphos = dppm, 4a-4d; dppe, 5a-5d), are accessible by the reactions of 1 with dppm and dppe in refluxing acetonitrile. Homonuclear shift-correlated 2-D (31)P((1)H)-(31)P((1)H) NMR experiments of the mixtures 4a-4d have been employed to elucidate the four stereoisomers. The reaction of 4 and pySK or [Mo(CO)(3)(eta(1)-SC(5)H(4)NH)(eta(2)-dppm)] (6) and O(2) affords allyl-displaced seven-coordinate bis(pyridine-2-thionate) complex [Mo(CO)(eta(2)-pyS)(2)(eta(2)-dppm)] (7). All of the complexes are identified by spectroscopic methods, and complexes 1, 5d, 6, and 7 are determined by single-crystal X-ray diffraction. Complexes 1 and 5d crystallize in the orthorhombic space groups Pbcn and Pbca with Z = 4 and 8, respectively, whereas 6 belongs to the monoclinic space group C2/c with Z = 8 and 7 belongs to the triclinic space group Ponemacr; with Z = 2. The cell dimensions are as follows: for 1, a = 8.3128(1) A, b = 16.1704(2) A, c = 16.6140(2) A; for 5d, a = 17.8309(10) A, b = 17.3324(10) A, c = 20.3716(11) A; for 6, a = 18.618(4) A, b = 16.062(2) A, c = 27.456(6) A, beta = 96.31(3) degrees; for 7, a = 9.1660(2) A, b = 12.0854(3) A, c = 15.9478(4) A, alpha = 78.4811(10) degrees, beta = 80.3894(10) degrees, gamma = 68.7089(11) degrees.  相似文献   

13.
4,5-Bis(terpyridyl)-2,7-di-tert-butyl-9,9-dimethylxanthene (btpyxa) was prepared to serve as a new bridging ligand via Suzuki coupling of terpyridin-4'-yl triflate and 2,7-di-tert-butyl-9,9-dimethylxanthene-4,5-diboronic acid. The reaction of btpyxa with either 1 equiv or an excess of PtCl(2)(cod) (cod = 1,5-cyclooctadiene) followed by anion exchange afforded mono- and dinuclear platinum complexes [(PtCl)(btpyxa)](PF(6)) ([1](PF(6))) and [(PtCl)(2)(btpyxa)](PF(6))(2) ([2](PF(6))(2)), respectively. The X-ray crystallography of [1](PF(6)).CHCl(3) revealed that the two terpyridine units in the ligand are nearly parallel to each other. The heterodinuclear complex [(PtCl)[Ru((t)Bu(2)SQ)(dmso)](btpyxa)](PF(6))(2) ([4](PF(6))(2)) (dmso = dimethyl sulfoxide; (t)Bu(2)SQ = 3,5-di-tert-butyl-1,2-benzosemiquinone) and the monoruthenium complex [Ru((t)Bu(2)SQ)(dmso)(trpy)](PF(6)) ([5](PF(6))) (trpy = 2,2':6',2' '-terpyridine) were also synthesized. The CV of [2](2+) suggests possible electronic interaction between the two Pt(trpy) groups, whereas such an electronic interaction was not suggested by the CV of [4](2+) between Pt(trpy) and Ru((t)Bu(2)SQ) frameworks.  相似文献   

14.
The bis(benzene-o-dithiol) ligands H(4)-1, H(4)-2, and H(4)-3 react with [Ti(OC(2)H(5))(4)] to give dinuclear triple-stranded helicates [Ti(2)L(3)](4)(-) (L = 1(4)(-), 2(4)(-), 3(4)(-)). NMR spectroscopic investigations revealed that the complex anions possess C(3) symmetry in solution. A crystal structure analysis for (PNP)(4)[Ti(2)(2)(3)] ((PNP)(4)[14]) confirmed the C(3) symmetry for the complex anion in the solid state. The complex anion in Li(PNP)(3)[Ti(2)(1)(3)] (Li(PNP)(3)[13]) does not exhibit C(3) symmetry in the solid state due to the formation of polymeric chains of lithium bridged complex anions. Complexes [13](4)(-) and [14](4)(-) were obtained as racemic mixtures of the Delta,Delta and Lambda,Lambda isomers. In contrast to that, complex (PNP)(4)[Ti(2)(3)(3)] ((PNP)(4)[15]) with the enantiomerically pure chiral ligand 3(4)(-) shows a strong Cotton effect in the CD spectrum, indicating that the chirality of the ligands leads to the formation of chiral metal centers. The o-phenylene diamine bridged bis(benzene-o-dithiol) ligand H(4)-4 reacts with Ti(4+) to give the dinuclear double-stranded complex Li(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] containing two bridging methoxy ligands between the metal centers. The crystal structure analysis and the (1)H NMR spectrum of (Ph(4)As)(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] ((Ph(4)As)(2)[(16]) reveal C(2) symmetry for the anion [Ti(2)(4)(2)(mu-OCH(3))(2)](2)(-). For a comparative study the dicatechol ligand H(4)-5, containing the same o-phenylene diamine bridging group as the bis(benzene-o-dithiol) ligands H(4)-4, was prepared and reacted with [TiO(acac)(2)] to give the dinuclear complex anion [Ti(2)(5)(2)(mu-OCH(3))(2)](2)(-). The molecular structure of (PNP)(2)[Ti(2)(5)(2)(mu-OCH(3))(2)] ((PNP)(2)[17]) contains a complex anion which is similar to [16](2)(-), with the exception that strong N-H...O hydrogen bonds are formed in complex anion [17](2)(-), while N-H...S hydrogen bonds are absent in complex anion [16](2)(-).  相似文献   

15.
Treatment of [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) with the imido complexes [Ti(NAr)Cl(2)(py)(3)] (Ar=2,4,6-C(6)H(2)Me(3)) and [Ti(NtBu)Cl(2)(py)(3)] in toluene affords the single azatitanocubanes [[Cl(2)(ArN)Ti]( micro(3)-NH)(3)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (2.C(7)H(8)) and [[Cl(2)Ti](micro(3)-N)(2)(micro(3)-NH)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (3), respectively. Similar reactions of complex 1 with the niobium and tantalum imido derivatives [[M(NtBu)(NHtBu)Cl(2)(NH(2)tBu)](2)] (M=Nb, Ta) in toluene give the single azaheterometallocubanes [[Cl(2)(tBuN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]] (M=Nb (4), Ta (5)), both complexes react with 2,4,6-trimethylaniline to yield the analogous species [[Cl(2)(ArN)M](micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]].(C(7)H(8)) (Ar=2,4,6-C(6)H(2)Me(3), M=Nb (6.C(7)H(8)), Ta (7.C(7)H(8))). Also the azaheterodicubanes [M[micro(3)-N)(2)(micro(3)-NH)](2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2C(7)H(8) [M=Ti (8.2C(7)H(8)), Zr (9.2C(7)H(8))], and [M[(micro(3)-N)(5)(micro(3)-NH)][Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)](2)].2 C(7)H(8) (Nb (10.2C(7)H(8)), Ta (11.2C(7)H(8))) were prepared from 1 and the homoleptic dimethylamido complex [M(NMe(2))(x)] (x=4, M=Ti, Zr; x=5, M=Nb, Ta) in toluene at 150 degrees C. X-ray crystal structure determinations were performed for 6 and 10, which revealed a cube- and double-cube-type core, respectively. For complexes 2 and 4-7 we observed and studied by DNMR a rotation or trigonal-twist of the organometallic ligands [[Ti(eta(5)-C(5)Me(5))(micro-NH)](3)(micro(3)-N)] (1) and [(micro(3)-N)(micro(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(micro(3)-N)]](1-). Density functional theory calculations were carried out on model complexes of 2, 3, and 8 to establish and understand their structures.  相似文献   

16.
The [Z(2)Ln(THF)](2)(mu-eta(2)():eta(2)()-N(2)) complexes (Z = monoanionic ligand) generated by reduction of dinitrogen with trivalent lanthanide salts and alkali metals are strong reductants in their own right and provide another option in reductive lanthanide chemistry. Hence, lanthanide-based reduction chemistry can be effected in a diamagnetic trivalent system using the dinitrogen reduction product, [(C(5)Me(5))(2)(THF)La](2)(mu-eta(2)():eta(2)()-N(2)), 1, readily obtained from [(C(5)Me(5))(2)La][BPh(4)], KC(8), and N(2). Complex 1 reduces phenazine, cyclooctatetraene, anthracene, and azobenzene to form [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(12)H(8)N(2))], 2, (C(5)Me(5))La(C(8)H(8)), 3, [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(14)H(10))], 4, and [(C(5)Me(5))La(mu-eta(2)-(PhNNPh)(THF)](2), 5, respectively. Neither stilbene nor naphthalene are reduced by 1, but 1 reduces CO to make the ketene carboxylate complex {[(C(5)Me(5))(2)La](2)[mu-eta(4)-O(2)C-C=C=O](THF)}(2), 6, that contains CO-derived carbon atoms completely free of oxygen.  相似文献   

17.
Yam VW  Hui CK  Yu SY  Zhu N 《Inorganic chemistry》2004,43(2):812-821
A series of tetraalkynylplatinate(II) complexes, (NBu(4))(2)[Pt(Ctbd1;CR)(4)] (R = C(6)H(4)N-4, C(6)H(4)N-3, and C(6)H(3)N(2)-5), and the diynyl analogues, (NBu(4))(2)[Pt(Ctbd1;CCtbd1;CR)(4)] (R = C(6)H(5) and C(6)H(4)CH(3)-4), have been synthesized. These complexes displayed intense photoluminescence, which was assigned as metal-to-ligand charge transfer (MLCT) transitions. Reaction of (Bu(4)N)(2)[Pt(Ctbd1;CC(5)H(4)N-4)(4)] with 4 equiv of [Pt((t)Bu(3)trpy)(MeCN)](OTf)(2) in methanol did not yield the expected pentanuclear platinum product, [Pt(Ctbd1;CC(5)H(4)N)(4)[Pt((t)Bu(3)trpy)](4)](OTf)(6), but instead afforded a strongly luminescent 4-ethynylpyridine-bridged dinuclear complex, [Pt((t)Bu(3)trpy)(Ctbd1;CC(5)H(4)N)Pt((t)Bu(3)trpy)](PF(6))(3,) which has been structurally characterized. The emission origin is assigned as derived from states of predominantly (3)MLCT [d(pi)(Pt) --> pi((t)Bu(3)trpy)] character, probably mixed with some intraligand (3)IL [pi --> pi(Ctbd1;C)], and ligand-to-ligand charge transfer (3)LLCT [pi(Ctbd1;C) --> pi((t)()Bu(3)trpy)] character. On the other hand, reaction of (Bu(4)N)(2)[Pt(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(4)] with [Ag(MeCN)(4)][BF(4)] gave a mixed-metal aggregate, [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)]. The crystal structure of [Pt(2)Ag(4)(Ctbd1;CCtbd1;CC(6)H(4)CH(3)-4)(8)(THF)(4)] has also been determined. A comparison study of the spectroscopic properties of the hexanuclear platinum-silver complex with its precursor complex has been made and their spectroscopic origins were suggested.  相似文献   

18.
The complex [[Ir(mu-Pz)(CNBu(t))(2)](2)] (1) undergoes double protonation reactions with HCl and with HO(2)CCF(3) to give the neutral dihydride complexes [[Ir(mu-Pz)(H)(X)(CNBu(t))(2)](2)] (X = Cl, eta(1)-O(2)CCF(3)), in which the hydride ligands were located trans to the X groups and in the boat of the complexes, both in the solid state and in solution. The complex [[Ir(mu-Pz)(H)(Cl)(CNBu(t))(2)](2)] evolves in solution to the cationic complex [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]Cl. Removal of the anionic chloride by reaction with methyltriflate allows the isolation of the triflate salt [[Ir(mu-Pz)(H)(CNBu(t))(2)](2)(mu-Cl)]OTf. This complex undergoes a metathesis reaction of hydride by chloride in CDCl(3) under exposure to the direct sunlight to give the complex [[Ir(mu-Pz)(Cl)(CNBu(t))(2)](2)(mu-Cl)]OTf. Protonation of both metal centers in [[Ir(mu-Pz)(CO)(2)](2)] with HCl occurs at low temperature, but eventually the mononuclear compound [IrCl(HPz)(CO)(2)] is isolated. The related complex [[Ir(mu-Pz)(CO)(P[OPh](3))](2)] reacts with HCl and with HO(2)CCF(3) to give the neutral Ir(III)/Ir(III) complexes [[Ir(mu-Pz)(H)(X)(CO)(P[OPh](3))](2)], respectively. Both reactions were found to take place stepwise, allowing the isolation of the intermediate monohydrides. They are of different natures, i.e., the metal-metal-bonded Ir(II)/Ir(II) compound [(P[OPh](3))(CO)(Cl)Ir(mu-Pz)(2)Ir(H)(CO)(P[OPh](3))] and the mixed-valence Ir(I)/Ir(III) complex [(P[OPh](3))(CO)Ir(mu-Pz)(2)Ir(H)(eta(1)-O(2)CCF(3))(CO)(P[OPh](3))].  相似文献   

19.
Stepwise bidentate coordination of the novel indolylphosphine ligands HL (1, HL = P(C(6)H(5))(2)(C(9)H(8)N)(diphenyl-2-(3-methylindolyl)phosphine); 2, HL = P(C(6)H(5))(C(9)H(8)N)(2)(phenyldi-2-(3-methylindolyl)phosphine); and 3, HL = P(C(6)H(5))(C(17)H(12)N(2))(di(1H-3-indolyl)methane-(2,12)-phenylphosphine)) to the ruthenium cluster Ru(3)(CO)(12) is demonstrated. Reactions of 1-3 with Ru(3)(CO)(12) led to the formation of Ru(3)(CO)(11)(HL) (4-6), in which HL is mono-coordinated through the phosphorus atom. The X-ray structures of 4-6 show that the phosphorus atom is equatorially coordinated to the triruthenium core. In all cases, gentle heating of Ru(3)(CO)(11)(HL) resulted in the formation of Ru(3)(CO)(9)(mu-H)(mu(3),eta(2)-L)(7-9) in which the NH proton of the indolyl substituent had migrated to the ruthenium core to form a bridging hydride ligand. The X-ray structure of Ru(3)(CO)(9)(mu-H)[mu(3),eta(2)-P(C(6)H(5))(2)(C(9)H(7)N)] (7) shows the deprotonated nitrogen atom of the indolyl moiety bridging over the face of the triruthenium core, bonding to the two ruthenium metal centers to which the phosphorus atom is not bound. The phosphorus atom is forced to adopt an axial bonding mode due to the geometry of the indolylphosphine ligand. Cluster electron counting and X-ray data suggest that the indolylphosphine behaves as a six-electron ligand in this mode of coordination. Compounds 4-9 have been characterized by IR, (1)H, (13)C and (31)P NMR spectroscopy.  相似文献   

20.
Wolff M  Okrut A  Feldmann C 《Inorganic chemistry》2011,50(22):11683-11694
The five polyhalides [(Ph)(3)PBr][Br(7)], [(Bz)(Ph)(3)P](2)[Br(8)], [(n-Bu)(3)MeN](2)[Br(20)], [C(4)MPyr](2)[Br(20)] ([C(4)MPyr] = N-butyl-N-methylpyrrolidinium), and [(Ph)(3)PCl](2)[Cl(2)I(14)] were prepared by the reaction of dibromine and iodine monochloride in ionic liquids. The compounds [(Ph)(3)PBr][Br(7)] and [(Bz)(Ph)(3)P](2)[Br(8)] contain discrete pyramidal [Br(7)](-) and Z-shaped [Br(8)](2-) polybromide anions. [(n-Bu)(3)MeN](2)[Br(20)] and [C(4)MPyr](2)[Br(20)] exhibit new infinite two- and three-dimensional polybromide networks and contain the highest percentage of dibromine ever observed in a compound. [(Ph)(3)PCl](2)[Cl(2)I(14)] also consists of a three-dimensional network and is the first example of an infinite polyiodine chloride. All compounds were obtained from ionic liquids as the solvent that, on the one hand, guarantees for a high stability against strongly oxidizing Br(2) and ICl and that, on the other hand, reduces the high volatility of the molecular halogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号