首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
N,N’-Polymethylenebis(thiosalicylidene)iminate and macrocyclic dithiadiazadibenzocycloalkadiene complexes of nickel(II) were synthesized and their electrochemical and spectroscopic properties were studied. Dithiadiazadibenzocycloalkadiene complexes containing two DMSO molecules coordinated to Ni2+ and two outer-sphere ClO4 anions were synthesized by the reaction of the corresponding macrocyclic ligands with Ni(ClO4)2·6H2O. The structure of 3,6-dithia-10,14-diazadibenzo[a,g]cyclopentadeca-9,14-dienylnickel(II)[bis(dimethyl sulfoxide) bis-perchlorate] was established by X-ray diffraction. The UV-Vis spectroscopic data are consistent with octahedral structures of diiminobis(sulfide) complexes, a square-planar structure of the thiosalen complex, and distorted tetrahedral structures of other diiminodithiolate complexes. The reaction of S-tert-butylthiosalicylaldehyde with hydrazine hydrate afforded di(ortho-tert-butylthiobenzal)azine. The reaction of the latter with anhydrous NiCl2 produced a colored complex with the simplest molecular formula Ni(C16H12N2S2) in 15% yield. Semiempirical PM3(tm) calculations and the results of UV-Vis, ESR, and 1H NMR spectroscopy demonstrate that this complex has most probably a dimeric structure, in which two Ni centers adopt a nearly square-planar configuration. The complexes are clearly divided into two types according to their electrochemical behavior in DMF solutions. The type 1 is characterized by reversibility of the first reduction steps. The type 2 is characterized by irreversible two-electron reduction as the first step accompanied by deposition of Ni metal on the electrode surface. Rapid electrochemically initiated alkylation occurs in the presence of various alkylating agents (BunI, BunBr, (DmgH)2CoCH3) in a solution of complex 1 in DMF.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 169–183, January, 2005.  相似文献   

2.
The first inorg/organic hybrid complex incorporating the macrocyclic oxamide, of formula [(NiL)2Cu2(μ-NSC)2(NSC)2] (1), (NiL, H2L = 2, 3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-dien), have been synthesized and structurally characterized. The crystals crystallize in the triclinic system, space group P-1, for (1) a = 8.319(3) Å, b = 10.434(4) Å, c = 14.166(5) Å, a = 107.030(5)°, β  =  91.257(5)°, γ = 107.623(5)°. The complex involved both bridging N, S-ligand, and oxamide ligand, C–H?S interactions and NCS → Ni weak coordination interactions making the complex superamolecular.  相似文献   

3.
4.
Dark-brown plate crystals of the [Mn7(H2O)26{Nb4OTe4(CN)12} 2](OH)2·11H2O compound (1) were prepared by the reaction of an aqueous ammonia solution of the K6[Nb4OTe4(CN)12]{K2CO3{KOH{8H2O complex with a glycerol solution of manganese(II) nitrate. The structure of complex 1 was established by X-ray diffraction. Compound 1 has a polymer structure containing four types of manganese atoms. The nitrogen atoms of eight cyano groups of the tetranuclear niobium cluster are coordinated to the manganese atoms to form a {2,3,8}-connected three-dimensional network. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 224–228, February, 2007.  相似文献   

5.
The reaction of 5-[2-(methylthio)ethyl]-3-phenyl-2-thioxoimidazolidin-4-one (LH) with salts MCl2· xH2O (M = Co, Ni, Cu; x = 2, 6) afforded the [M(L)Cl]n complexes of NiII, CoII, and CuII. The electrochemical behavior of the LH ligand and its complexes was studied using the cyclic voltammetry and rotating disk electrode techniques. The structures of the synthesized compounds were determined by the data of UV—Vis and IR spectroscopy, mass spectrometry, and electrochemical characteristics. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 339–343, February, 2007.  相似文献   

6.
Methyliminodiacetic acid (H2Mida) and imidazole react with copper(II) to form crystals of the square pyramidal complex [Cu(Mida)Im]. One N and two O atoms of the Mida ligand (Cu-N 2.010(1) Å, Cu-O 1.955(1) Å, and 1.978(1) Å) and the imidazole N atom (1.950(1) Å) lie at the base of the pyramid. The carboxyl O atom of the neighboring complex lies at the apical position (2.411(1) Å); in this way the individual complexes are linked into infinite zigzag chains. Substitution of imidazole by 1,10-phenanthroline gave [Cu2(Mida)2(Phen)H2O]·2H2O crystals with two nonequivalent centrosymmetric octahedral anions [Cu(Mida)2]2? of face type (Cu-N 2.023 Å and 2.028(2) Å, Cu-Oax 2.579 Å and 2.530(2) Å, Cu-Obas 1.952 Å and 1.936(2) Å). The anions serve as bridges in chains between the [Cu(Phen)H2O]2+ cation fragments to which they are bonded by their axial carboxyl groups. The Cu atom of the cation has a [4+1] environment (with the H2O molecule lying on the axis of the pyramid, and with two N atoms of the ligand and two O atoms of the anions lying at the base).  相似文献   

7.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

8.
The reaction of [RuCl2(PPh3)3] complex with dimethylpyrazole has been examined. A new ruthenium complex—[RuCl2(PPh3)2(3,5-Me2HPz)2] has been obtained and characterized by IR, 1H NMR and UV-VIS measurements. Crystal and molecular structure of the complex has been determined. The electronic structure of the complex has been calculated by TDDFT method.  相似文献   

9.
The effects of six synthetic imidazolium-based ionic liquids (ILs) on the CuII-catalyzed chemiluminescence of lucigenin (Luc-CL) in the pH range 6.0–11 were investigated. Preliminary experiments found that the CL emission was strongly enhanced or inhibited in the presence of the ILs. The degree of enhancement or inhibition of the CL intensity in the presence of each IL was related to the molecular structure of the IL, the medium used, and the pH. The maximum enhancement of the CL intensity was observed at pH 9.0 (amplification factor?=?443). This decrease in the pH at which maximum CL enhancement occurred and the substantial signal amplification of the Luc-CL may be related to a strong interaction between CuII and the imidazolium ring of superior ILs at this pH. Additionally, the formation of IL microdomains in semi-aqueous media permitted more solubility of the product yielded by the Luc-CL reaction (N-methylacridone), which could increase the CL intensity. To obtain consistent data on the catalytic efficiency of CuII in the presence of various ILs as well as the corresponding CL emission intensities, fluorescence quantum yields (Φ F) of lucigenin were measured under the same conditions. Comparison of the data pointed to the mechanism that controls the properties of Luc-CL in the presence of the CuII/IL complexes. Based on the catalytic effect of the CuII/IL complex and the measurement of the enzymatically generated H2O2, a novel, simple, and sensitive CL method for determining glucose with a detection limit (LoD) of 6.5 μM was developed. Moreover, this method was satisfactorily applied to the determination of glucose in human serum and urine samples.
Graphical Abstract The lucigenin chemiluminescence assay for H2O2 and glucose using imidazolium–based ionic liquid derivatives/CuII complexes as efficient catalysts at pH 9.0
  相似文献   

10.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   

11.
The standard (p 0=0.1 MPa) molar enthalpies of formation, at T=298.15 K, in the gaseous phase, for three tetradentate Schiff bases involving a N2O2 set, N,N’-bis(salicylaldehydo)cyclohexanediimine (H2salch), N,N’-bis(acetylacetone)cyclohexanediimine (H2acacch) and N,N’-bis(benzoylacetone)cyclohexanediimine (H2bzacch), were determined from their enthalpies of combustion and sublimation, obtained by static bomb calorimetry in oxygen and by the Knudsen effusion technique, respectively. The results are compared with identical parameters for related compounds previously studied, resulting from the condensation of salicylaldehyde or β-diketone with aliphatic diamines.  相似文献   

12.
Schiff bases derived from 4-aminomethylcarbostyril and their transition metal complexes with CoII, NiII, CuII and ZnII have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities electronic, IR, PMR, ESR, FAB-Mass and thermal studies. From the above spectral studies it is concluded that the ligands of 4-substituted carbostyril Schiff bases, viz, salicylidene 4-aminomethylcarbostyril (SAMC); o-vanillinsalicylidene 4-aminomethylcarbostyril (VAMC) and 5′ chlorosalicylidene 4-aminomethylcarbostyril (CSAMC) act as bidenate molecules coordinating through azomethine nitrogen and phenolic oxygen. The ligands and their metal complexes have been screened in vitro for antibacterial, antifungal and antitumor activity. The results indicate that the biological activity increases on complexation. The CuII complexes of the above ligands show greater inhibitory action towards the P388/s tumor cells at lower concentrations.  相似文献   

13.
New bidentate Schiff-base ligands 2-(2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazinecarbothioamide HL1 and 2-(2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)hydrazinecarboxamide HL2 were synthesized from the condensation of 2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-one with thiosemicarbazide and semicarbazide, respectively. Homoleptic complexes of these ligands, of general formula K[Cr(L n )2Cl2], K2[Mn(L n )2Cl2], K2[Fe(L1)2Cl2] and [M(L n )2] (where M = Co(II), Ni(II) Cu(II), Zn(II), Cd(II), and Hg(II) ions; n = 1 or 2) are reported. The mode of bonding and overall geometry of the complexes were determined through IR, UV-Vis, NMR and mass spectral studies, magnetic moment measurements, elemental analysis, metal content, and conductance. These studies revealed octahedral geometry for Cr(III), Mn(II), and Fe(II) complexes, square planar for Cu(II), Co(II), and Ni(II) complexes and tetrahedral for Zn(II), Cd(II), and Hg(II) complexes.  相似文献   

14.
Comparative quantum chemical calculations of structural parameters, chemical shifts of 11B NMR spectra, and atomic charges in 10-vertex boron hydride anions [1-CB9H10] and [1-B10H9N2] were performed using the restricted Hartree-Fock method with the 6-31++G(D,P) basis set. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1853–1855, September, 2007.  相似文献   

15.
The reaction of cyclopentylamine with 2-hydroxy-1-naphthaldehyde and 5-nitrosalicylaldehyde, respectively, in methanol affords two new Schiff bases, 1-(cyclopentyliminomethyl)naphthalen-2-ol (HL1) and 4-nitro-2-(cyclopentyliminomethyl)phenol (HL2). Two new zinc(II) complexes, [Zn(L1)2] (I) and [Zn(L2)2] (II), derived from the Schiff bases, have been prepared and characterized by single-crystal X-ray diffraction, FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P21/c with a = 17.834(4), b = 14.738(3), c = 9.868(2) Å, β = 91.20(3)°, V = 2593.1(9) Å3, Z = 4. Complex II crystallizes in the triclinic space group P \(\bar 1\) with a = 10.206(1), b = 10.502(1), c = 12.554(1) Å, α = 66.771(2)°, β = 78.133(2)°, γ = 76.292(2)°, V = 1191.8(1) Å3, Z = 2. The Zn atom in each complex is coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral geometry. The Schiff bases and the complexes were assayed for antibacterial activities.  相似文献   

16.
A series of Schiff base compounds were synthesized by the reaction of different 3,5-dihalosalicylaldehyde (halo atoms equal to Cl, Br and I) with polymethylenediamines of varying chain length. The Schiff bases were characterized using FT-IR, UV–Vis, 1H NMR, 13C NMR and mass spectroscopic techniques, and elemental analyses (CHN), and crystal structure of some compounds was determined by X-ray crystallography. The in vitro biological screening effects of the synthesized compounds were tested against different microbial kinds. The results revealed that all compounds were biologically active.  相似文献   

17.
Using 1-ethyl-2-methylimidazolium trifluoroacetate (EMImTfa) as the supporting electrolyte, a couple of well-defined and reversible redox peaks of Myb could be observed at the basal plane graphite (BPG) electrode through direct electron transfer between the protein and the BPG electrode, whose anodic and cathodic peak potentials were at −0.098 V and −0.144 V vs. Ag | AgCl, respectively. Both anodic and cathodic peak currents increased linearly with the potential scan rates. Compared with the supporting electrolyte of phosphate buffer solution, EMImTfa played an important role for the direct electron transfer between Myb and the BPG electrode. Further investigation suggested that Myb was adsorbed tightly on the surface of the BPG electrode in the presence of EMImTfa to form a stable, approximate monolayer Myb film. Myb adsorbed on the BPG electrode surface could retain its biological activity and showed a remarkable electrocatalytic activity for the reduction of H2O2 in an EMImTfa aqueous solution. Based on these, a third-generation biosensor could be constructed to directly detect the concentration of H2O2 in EMImTfa aqueous solution with a limit of detection of 3.24 × 10−8 M. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 3, pp. 363–368. The text was submitted by the authors in English.  相似文献   

18.
The electronic structure of the (η2-C60)Pd[P(Ph2)C5H4]2Fe complex was calculated by the “hybrid” B3LYP method. Comparison of the experimental X-ray emission C-Kα spectrum and theoretical spectrum of the compound demonstrated that the electron interactions between the C60 core, palladium atom, and organometallic fragment are described correctly in the framework of the quantum chemical method used. The electronic structure of the organometallic fullerene complex can be presented as a set of blocks of orbitals corresponding to different types of chemical bond. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2640–2644, December, 2005.  相似文献   

19.
The crystal structure of a new symmetrical pentadentate N2O3 Schiff base: di[4-(phenylimino)pentan-2-one] ether (H2L) is described. In the solid state, the ligand appears as a keto-imine tautomer, while in DMSO solution, the eneamine form is observed. This ligand coordinates cobalt(II), nickel(II), copper(II) and cadmium(II). The structures of these new complexes are described using infrared and electronic spectroscopy, 1H-n.m.r. and d.s.c. The cyclic voltammograms of the ligand and the complexes in DMF are discussed.  相似文献   

20.
The reaction of di-μ-chlorobis(1,5-cyclooctadiene)dirhodium with (4S, 5S)-2,2-dimethyl-4,5-bis(methylaminomethyl)-1,3-dioxolane (1) gave the complex [Rh(cod)(1)]Cl (cod is 1,5-cyclooctadiene). The composition of the complexes CoCl2 · L2 and [Rh(cod)(L2)]X (L2 = 1, (4S,5S)-2,2-dimethyl-4,5-bis(aminomethyl)-1,3-dioxolane, and (4S, 5S)-2,2-dimethyl-4,5-bis(dimethylaminomethyl)-1,3-dioxolane; X = Cl, TfO) was studied using IR and 1H NMR spectroscopy. In the RhI cyclooctadienediamine complexes, the diene molecule forms a stronger bond with the metal atom than that in the cyclooctadienediphosphine analogs. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2270–2274, October, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号