首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用先辐射后冻融的方法制备了一系列聚乙烯醇(PVA)/水溶性壳聚糖/甘油水凝胶,通过浸泡法在水凝胶中载入云南白药,并且研究了溶液pH值、离子强度、冻融次数和PVA浓度对水凝胶溶胀性能和云南白药释放性能的影响.研究发现水凝胶的溶胀度随溶液离子强度的增大而下降,且酸性溶液大于中性溶液.水溶性壳聚糖的加入有利于云南白药载入凝胶,同时使云南白药的释放具有pH和离子强度敏感性.云南白药的释放量在模拟体液中最大,在中性溶液中次之,在水和酸性溶液中最小,与溶胀度变化关系相反.而水凝胶的溶胀度和云南白药释放量均随冻融次数和PVA浓度的增大而下降.分析表明,云南白药在不同介质中的释放量主要取决于药物和溶液中离子的交换能力;在相同介质中,不同凝胶的药物释放量受溶胀度影响明显.凝胶溶胀速率远大于药物释放速率说明后者主要由扩散过程控制.药物释放的pH敏感性表明该水凝胶具备用作云南白药的口服载体的潜力.  相似文献   

2.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of chitosan and polyacrylamide (PAAm) hydrogels have been prepared, and the effect of changing pH, temperature, ionic concentration, and applied electric fields on the swelling of the hydrogels was investigated. The swelling kinetics increased rapidly, reaching equilibrium within 60 min. The semi‐IPN hydrogels exhibited a relatively high swelling ratios of 385%–569% at T=25°C. The swelling ratio increased with decreasing pH below pH=7 due to the dissociation of ionic bonds. The swelling ratio of the semi‐IPN hydrogels was pH, ionic concentration, temperature, and electric field dependent. Differential scanning calorimetry (DSC) was used to determine the volume of free water in the semi‐IPN hydrogels, which was found to increase with increasing PAAm content.  相似文献   

3.
Ionically cross-linked polyampholytic hydrogels were synthesized by redox copolymerization of acrylamide and an ionic complex of (N,N-diethylamino)ethyl methacrylate and acrylic acid (designated as PADA hydrogel). The swelling behavior of the hydrogels in water indicated that a minimal equilibrium swelling ratio is found when the molar ratio of anionic/cationic monomers was 1.55. In NaCl solution, the hydrogels exhibited the typical swelling behavior of conventional polyampholytic gels. Their equilibrium swelling ratios increased with an increase in the NaCl concentration. In solutions of multivalent ions (CaCl2 and trisodium citrate solutions), the equilibrium swelling ratios of the hydrogels increased first and were then followed by a decrease with an increase in salt concentration. Interestingly, an unexpected abrupt swelling phenomenon was observed when the fully swollen hydrogels in salt solution were transmitted to pure water. The unique swelling behavior of PADA hydrogels depends not only on the molar ratio of the anionic/cationic monomers but also on the valency of the ions.  相似文献   

4.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol)/chitosan were prepared by UV irradiation. The swelling behavior of the IPN hydrogels was studied by immersion of the films in deionized water at various temperatures and in buffer solutions at various pHs. IPN3 exhibited a relatively high swelling ratio. The swelling ratio increased with an increase in the content of chitosan and were higher in acidic rather than in alkaline pHs. The overall swelling process was anomalous diffusion due to polymer relaxation. The diffusion coefficient values increased with an increase in temperature and the content of chitosan.  相似文献   

5.
以丙烯酸(AA)和丙烯酰氧乙基三甲基氯化铵(DAC)为单体, 采用水溶液聚合法制备了P(AA-DAC)聚电解质水凝胶. 采用红外光谱和核磁共振等方法对其结构进行了表征. 研究了不同组成比的聚电解质水凝胶在去离子水、不同pH值溶液以及不同离子强度盐溶液中的溶胀行为. 研究结果表明, 摩尔比为1∶1的聚电解质水凝胶表现出典型的两性聚电解质凝胶的溶胀行为. 离子强度对其溶胀行为有着显著影响, 在溶液离子强度较高时, 凝胶网络的溶胀主要受溶剂向凝胶内部扩散所控制, 满足Fick型扩散规律n≤0.5, 随着溶液离子强度的增加, 凝胶网络平衡含水量增加, 扩散系数增大.  相似文献   

6.
Polyacrylonitrile (PAN) grafted chitosan was prepared by ceric‐initiated graft polymerization of acrylonitrile onto chitosan in a homogenous medium. The copolymer chitosan‐g‐PAN product was then hydrolyzed to yield a novel smart hydrogel (H‐chitoPAN) with superabsorbing properties. The influence of add‐on values as well as temperature and time of hydrolysis of the initial chitosan‐g‐PAN on swelling behavior of the hydrogel was evaluated in water and various salt solutions. The swelling kinetics of the superabsorbing hydrogel was studied as well. The hydrogels exhibited ampholytic and pH‐sensitivity characteristics. Several sharp swelling changes were observed in lieu of pH variations in a wide range (pH 2–13). The swelling variations were explained according to swelling theory based on the hydrogel chemical structure. Superabsorbency, pH‐ and salt‐sensitivity of the chitosan‐based hydrogel was briefly compared with the classical starch‐based superabsorbent, H‐SPAN. The pH‐reversibility and on–off switching behavior of the intelligent H‐chitoPAN hydrogels makes them good candidates for considering as potential drug carries. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Semi‐interpenetrating polymeric networks of chitosan and poly(vinyl alcohol) [PVA] were prepared by varying the ratio of the constituents. The hydrogels were crosslinked using genipin, a naturally occurring nontoxic cross‐linking agent. The swelling behavior of these hydrogels was studied by immersing the films in deionized water at various temperatures and in buffer solutions of different pH. The states of water in the hydrogels, swollen at 25°C and pH 7, were determined using Differential Scanning Calorimetry (DSC). The swelling behavior of the gels was found to be dependent on temperature and pH of the medium. The amount of freezing water in the swollen hydrogels increased, whereas the amount of nonfreezing bound water remained more or less the same with increasing PVA concentration.  相似文献   

8.
Hyaluronate-hydroxyethyl acrylate blend hydrogels were investigated as matrices for controlled release devices. Glycidyl methacrylate (GMA) derivatized HA (GMA-HA) was synthesized by coupling of GMA to HA in the presence of a suitable catalyst. These hydrogels were prepared by a free radical copolymerization of GMA-HA and hydroxyethyl acrylate. The water content of these hydrogels at equilibrium swelling in water (Ww) was 0.978+/-0.0073 (n=18); however, these hydrogel was mechanically tough and could be used as disk shape. The hydrogels swelling were found to depend on ionic strength and pH. The dried hydrogels quickly regained their original condition in water, and they swelled to more than 90% of its initial water contents after 30 min. This swelling-deswelling behavior was reproducible. The release of chlorpromazine HCl as a model cationic drug from the gels was suppressed significantly in water. The release increased with increasing the ionic strength and decreasing pH of bulk solutions.  相似文献   

9.
Poly(vinyl alcohol) (PVA)/water soluble chitosan (ws-chitosan)/glycerol hydrogels were prepared by γ-irradiation and γ-irradiation followed by freeze-thawing, respectively. The effects of irradiation dose and the contents of PVA and agar on the swelling, rheological, and thermal properties of these hydrogels were investigated. The swelling capacity decreases while the mechanical strength increases with increasing PVA or agar content. Increasing the irradiation dose leads to an increase in chemical crosslinking density but a decrease in physical crosslinking density. Hydrogels made by irradiation followed by freeze-thawing own smaller swelling capacity but larger mechanical strength than those made by pure irradiation. The storage modulus of the former hydrogels decreases above 50 °C and above 70 °C it comes to the same value as that prepared by irradiation. The ordered association of PVA is influenced by both chemical and physical crosslinkings and by the presence of ws-chitosan and glycerol. These hydrogels are high sensitive to pH and ionic strength, indicating that they may be useful in stimuli-responsive drug release system.  相似文献   

10.
对使用CaCO3为成孔剂合成的快速响应的温敏性聚 (N 异丙基丙烯酰胺 ) (PNIPA)水凝胶进行了热力学行为和水的状态研究 .热力学研究表明 ,多孔结构的PNIPA水凝胶的平衡膨胀比随着反应物中CaCO3含量的增加而增加 ,随着交联剂浓度的增加而显著减小 ,但相转变温度均不受影响 .在水溶液中加入NaCl则使PNIPA水凝胶的相转变温度 (LCST)线性减小 .利用DSC分析了水凝胶中水的存在状态 ,证明了上述多孔PNIPA水凝胶中存在三种不同状态的水 ,研究了不同CaCO3粒子含量和离子强度对三种不同状态水的影响  相似文献   

11.
吴子良 《高分子科学》2017,35(10):1276-1285
The developments of tough hydrogels in recent years have greatly expanded the applications of hydrogels as structural materials. However, most of the tough hydrogels are made of synthetic polymers. To develop biopolymer-based tough hydrogels has both fundamental and practical significances. Here we report a series of polysaccharides-based tough hydrogel films prepared by polyion complexation and solvent evaporation of chondroitin sulfate(CS) and protonated chitosan(CHT) solutions with different weight ratios. The obtained CS/CHT gel films with thickness of 40-80 μm and water content of 66 wt%-81 wt% possess excellent mechanical properties, with tensile breaking stress and breaking strain being 0.4-3 MPa and 160%-320%, respectively. We found that in the mixture solutions there are large amounts of excess CHT in terms of charges; after swelling the films in water, the acetic acid, which is used to protonate the amino groups of CHT, diffuses out of the gel matrix, enhancing the intermolecular interactions between CHT molecules and thus improving the mechanical properties of gel films, besides the ionic bonds between CS and CHT. Antimicrobial tests also showed that the gel films with low weight ratio of CS to CHT, corresponding to the case with excess CHT, have evident antimicrobial effect. These CS/CHT gel films with good mechanical properties and antimicrobial effect should extend the applications of hydrogels in biomedical fields.  相似文献   

12.
Semi‐interpenetrating polymer network (SIPN) hydrogels, composed of chitosan (CS) and poly(diallyldimethylammonium chloride) (PDADMAC), were prepared, and they exhibited electrically sensitive behavior. The swelling behavior of the CS/PDADMAC SIPN hydrogels was studied through the immersion of the gels in various concentrations of aqueous NaCl solutions, and their responses to stimuli in electric fields were also investigated. When the swollen SIPN hydrogels were placed between a pair of electrodes, they exhibited bending behavior upon the application of an electric field, which was stepwise and dependent on the magnitude of the field. To clarify the relationship between the equilibrium‐swelling ratio and the bending behavior of the SIPN hydrogels, the state of water in the SIPN hydrogels was also investigated with differential scanning calorimetry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 914–921, 2004  相似文献   

13.
Temperature sensitive PolyNIPAAm hydrogels in the form of rod were prepared from the binary system of NIPAAm/water and ternary system of NIPAAm/Bis/water by γ-irradiation with 60Co source at room temperature, respectively. The prepared hydrogels had obvious temperature sensitivity (LCST is about 35.0 °C) and suitable mechanical properties. The incorporation of cross-linking agent, N, N′-methylene-bisacrylamide (Bis), into the binary system of monomer/water reduced the gelation dose. The maximum swelling ratio of hydrogels was decreased with the increasing of dose or the incorporation of Bis. The diffusion behavior of water in hydrogels obtained in this work was investigated. In addition, the drug delivery of fluoro uracili (Fu-5) from the hydrogels was investigated.  相似文献   

14.
Hydrogel‐forming copolymers based on chitosan grafted with different amounts of polyacrylamide were synthesized and its swelling capacity determined in distilled water, sodium chloride solutions, as well as in buffer solutions at pH 1.2 and 8.0. The resulting products are highly efficient as hydrogel‐forming materials with swelling at equilibrium going approximately from 300 to 3 000 times the volume of the dry solid polymer in all the investigated media. The products, different to usual hydrogels, swells considerably more and quickly in electrolyte‐containing solutions compared to in distilled water. This has been attributed to their structure that contains non‐ionic polyacrylamide macromolecules grafted onto the trunk polymer chitosan, which is cationic in nature. In‐vitro drug‐release behavior of formulations containing grafted copolymers have been tested using theophylline as a water‐soluble drug and the results were compared with similar formulations containing unmodified chitosan. It was found that tablets based on formulations containing grafted chitosan show higher erosion and swelling compared with those of the matrix based on unmodified chitosan, leading to a higher fraction of theophylline released. It can be concluded that formulations based on the synthesized copolymers are potentially useful for fluid absorbency and as prolonged drug‐release matrices.

The swelling of one of the hydrogels studied here.  相似文献   


15.

The swelling behavior of acrylamide (AAm)–based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. [(Methacrylamido)propyl]trimethyl‐ammonium chloride (MAPTAC) and acrylic acid (AAc) were used as the ionic comonomer in the hydrogel preparation. Three sets of hydrogels containing 70 mol% AAm and 30 mol% ionic comonomers of varying mole ratios were prepared. The variations of the hydrogel volume in response to changes in pH, and salt concentration were measured. As pH increases from 1, the hydrogel volume V eq in water first increases and reaches a maximum value at a certain pH. Then, it decreases again with a further increase in pH and attains a minimum value around the isoelectric point (IEP). After passing the collapsed plateau region, the gel reswells again up to pH=7.1. The reswelling of the collapsed gels containing 10 and 4% MAPTAC occurs as a first‐order phase transition at pH=5.85 and 4.35, respectively, while the hydrogel with 1% MAPTAC reswells continuously beyond its IEP. Depending on pH of the solution, the hydrogels immersed in salt solutions exhibit typical polyelectrolyte or antipolyelectrolye behavior. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. It was shown that the equilibrium swelling theory qualitatively predicts the experimental behavior of polyampholyte hydrogels.  相似文献   

16.
Hydrogels composed of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) were prepared by redox polymerization with degradable chitosan cross-linkers. Chitosan degradable cross-linkers were synthesized by the acrylation of the amine groups of glucosamine units within chitosan and characterized with 1H NMR. With the chitosan cross-linkers, loosely cross-linked poly(N-isopropylacryamideco-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their phase transition behavior, lower critical solution temperature (LCST), water content and degradation properties were investigated. The chitosan cross-linked P(NIPAAm-co-AAc) hydrogels were pliable and transparent at room temperature. The LCST could be adjusted at 32∼39°C by alternating the feed ratio. Swelling was influenced by NIPAAm/AAc monomer ratio, cross-linking density, swelling media, and temperature. All hydrogels with different feeding ratios contained more than 95% water at 25°C in the ultra pure water and phosphate-buffered saline (PBS, pH = 7.4 ± 0.1), and had a prospective swelling in the simulated gastric fluids (SGF, pH = 1.2) > 72.54%. In degradation studies, breakdown of the chitosan cross-linked P(NIPAAm-co-AAc) hydrogels was dependent on the cross-linking density. The chitosan cross-linked P(NIPAAm-co-AAc) hydrogels which can be tailored to create environmentally-responsive artificial extracellular materials have great potential for future use.   相似文献   

17.
At four different charge densities, ionic hydrogels based on N,N-dimethylacrylamide (DMAAm), acrylamide (AAm), and itaconic acid (IA) were synthesized by free-radical cross-linking copolymerization in water with N,N-methylenebis(acrylamide) (BAAm) as the cross-linker, ammonium persulfate (APS) as the initiator, and N,N,N′,N′-tetramethylenediamine (TEMED) as the activator. The swelling behaviors of these hydrogels were analyzed in buffer solutions at various pH. It was observed that the swelling behavior of cross-linked ionic poly(N,N-dimethylacrylamide-co-acrylamide) [P(DMAAm-co-AAm)] hydrogels at different pHs agreed with the modified Flory-Rehner equation based both on the phantom network and affine network models and the ideal Donnan theory. In addition, the kinetics of swelling of the hydrogels was studied in pH 2, 5 and 9 buffer solutions. The swelling curves exhibited the characteristic features of transport process, apparently the Fickian diffusion of fast rates.  相似文献   

18.
Crosslinked 2-acrylamido-2-methyl-1-propane sulfonic acid -co- acrylic acid (AMPS/AA) hydrogels were synthesized by radical polymerization in the presence of N,N′-methylenebisacrylamide (MBA) as the crosslinking agent using potassium persulfate (KPS) as initiator. Hydrogels with different compositions and crosslinker concentrations were prepared. The structures of hydrogels were characterized by FTIR analysis. Thermal stabilities of the hydrogels were investigated using TGA and DSC analysis. Swelling kinetics and the equilibrium water content (EWC) of the hydrogels were studied. The swelling behavior of these hydrogels was investigated at different pHs at room temperature. Also the swelling behavior of these hydrogels was investigated at different ionic strength. The ability of the prepared hydrogels to bind uranium(VI) was tested under noncompetitive conditions by batch equilibrium procedure. Experimental work using uranyl nitrate hexahydrate bought from the local market was carried out in the safeguards destructive analysis laboratory (KMP-I) in the National Center for Nuclear Safety and Radiation Control.  相似文献   

19.
Conducting polymer hydrogels consisting of polypyrrole (PPy) and chitosan (CS) are prepared by static polymerization of pyrrole using methyl orange (MO) as the dopant and Fe2(SO4)3 as the oxidant in the CS aqueous solution. PPy/CS composite hydrogels not only have good electrical conductivities, but also exhibit excellent swelling/deswelling behaviors due to the participation of one-dimensional conducting PPy blocks in the hydrogel network. The effects of the amount of the oxidant and ionic strength on the physical properties of PPy/CS composite hydrogels are studied in detail. The results show that PPy/CS composite hydrogels have improved water absorbencies in saline solutions compared with the conventional polyelectrolyte hydrogel.  相似文献   

20.
Carboxymethylated chitosan (CMCt) hydrogels were synthesized by γ-ray radiation-induced crosslinking in the presence of acids or polyfunctional monomers. Compared with that of CMCt hydrogels synthesized without additives, the gel fraction was improved and the gelation dose was decreased obviously after incorporating acids or polyfunctional monomers into CMCt hydrogels. The diffusion behavior of water in the CMCt gels prepared at different conditions was Fickian diffusion, and the swelling of the CMCt gels displayed characteristic pH sensitivity, which was analyzed by fluorescence molecular probes. Preliminary mechanism of radiation-induced crosslinking of CMCt in the presence of acids or polyfunctional monomers was discussed based on the FTIR and sol-gel analysis. Furthermore, it was found that CMCt hydrogels were hydrodegradable with high temperature (>60 °C), and incorporating polyfunctional monomers into the CMCt hydrogels also could improve the thermal stability of the CMCt hydrogels obviously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号