首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CAS SCF CI (SD) calculations have been carried out for the 3Σ?g, 1Σ+g, 3Σ+u, and 5Δu states of Sc2 using large gaussian basis sets. The 3Σ?g, 1Σ+g, and 3Σ+u states arise from the 2D(4s2 3d1) + 2D(4s2 3d1) limit of Sc2 and are found to be only weakly bound (Dc ≈ 0.06 eV and Rc ≈ 8.0a0). The 5Δu state arises from the 2D(4s2 3d1) + 4F(4s1 3d1 4p1) atomic limit. This state is found to be strongly bound relative to its limits (Dc ≈ 0.8 eV and Rc ≈ 7.0a0).  相似文献   

2.
Laser-induced fluorescence Of Cs2 molecules in the infrared region (4000–9000 cm?1) has been observed using several exciting wavelengths from an argon-ion laser and from a ring dye laser. Accurate molecular constants for the first two excited 1Σg+ electronic states are derived from spectra recorded at high resolution by Fourier transform spectroscopy. Main molecular constants are: (2)1Σg+: Tc = 12114.090 cm?1, ωe = 23.350 cm?1, Bc = 7.4.5 × 10?3 cm?1, Rc = 5.8316 Å; (3)1Σg+: Te = 15975.450 cm?1, ωe = 22.423 cm?1 , Be = 8.23 × 10?3 cm?1, Rc = 5.5569 Å.  相似文献   

3.
Theoretical potential energy curves are computed for the X1Σ+g state of Cs2 using relativistic effective core potential and a large valence gaussian basis set. Eighteen electrons are correlated by a four-reference MC SCF Cl(SD) procedure. Our best calculation (with experimental values in parenthesis) gave Re = 9.05 (8.78) bohr and De = 3141 (3648 ± 8) cm?1.  相似文献   

4.
Laser-induced fluorescence of Be2 produced by laser vaporization of the metal is observed and analyzed. The X1Σg+ ground state is characterized by re = 2.45 A and De = 790 ± 30 cm?1. The spectroscopic constants and lifetimes of the much more strongly bound A 1Πu and B 1Σg+ states are also obtained. The Be2 molecular properties and bonding are discussed and compared with related species.  相似文献   

5.
SCF MO computations have been carried out on several excited states of CH and NH in which the excited MO 4σ is a Rydberg or near-Rydberg MO at internuclear distances R near that (Re) of equilibrium in the ground state, but becomes an antibonding valence-shell MO as R increases toward dissociation. For the lowest 3Πg state of H2 and the lowest 3Πg and 3Πu states of N2 the extent of 3dπ Rydberg character in the excited MO as a function of R for some R values ? Re is evaluated by SCF MO computations.  相似文献   

6.
Ab initio multi-configuration self-consistent field and first-order configuration interaction (FOCI) calculations in an extended basis set have been carried out for the lower energy electronic states of Al2. The ten core electrons of each Al atom were replaced by an accurate compact effective core potential. The FOCI calculated To value for the 3Σg?-3Σu? transition agrees with the experimentally observed emission band to within 90 cm?1. 3Πu is calculated to be the electronic ground state of Al2. Based on FOCI energies and qualitative intensity arguments, the reported optical absorption spectrum of matrix isolated Al2 also agrees best with a 3Πu ground state. The 3Σg?1 state is calculated (Te) at only 324 cm?1 above the 3Πu state, and the 1ΣEg+ state is predicted to lie higher.  相似文献   

7.
Large scale ab initio SCF and CI calculations are employed to study the potential curves for the d 3IIg, a 3IIu and X1Σ+g states of the C2 radical. The electronic transition moment Re′e″ for the Swan bands (d 3IIga 3IIu) is calculated in various AO and MO basis sets as a function of the internuclear CC distance. The form of the Σ|Re′e″|2 curve is in very good agreement with that obtained recently from measurements of Danylewych and Nicholls and Tatarczyk et al.; the calculated value for Σ|Re′e″2 at 2.44 bohr is found to be 5.2 au2 compared to the most recent experimental values of |Re(roo)|2 = 3.57 au2 of Tatarczyk et al.  相似文献   

8.
Cr2 is produced by pulsed YAG laser vaporization of chromium metal and its fluorescence excitation spectrum is analyzed. The high value of vibrational frequency ΔG12 = 452.34 cm?I (ω″e ≈ 470 cm?1) and short internuclear distance re = 1.6788 Å are indicative of a very strongly bound 1+g ground state.  相似文献   

9.
The laser-excitation spectrum of the transition X 2Σ+ → A 2Π of NaAr has been investigated using a supersonic expansion of a mixture of sodium vapor and argon gas for production of the molecules. In comparison to preyous investigations the rotational constants of the vibrational levels ν″ = 2, 3 and 4 of the X 2Σ+ state could in addition be determined. From our results we deduce a value of Re = 5.008(5) × 10?10 m for the equilibrium internuclear distance and of De = 41.7(δ) cm?1 for the well depth of the X 2Σ+ state.  相似文献   

10.
The ground-state potential curve for F2 has been obtained using large-scale MC SCF and CI methods. MC SCF curves were obtained with the CAS SCF method using a variety of sets of active orbitals. The main conclusion from the CAS SCF calculations is that the 2πu orbital is important. CI curves were obtained using the contracted CI method. The largest calculations contained 312000 configurations proper spin and space (d2h) symmetry. The main conclusions from the CI calculations are that the configuration XXX are important, otherwise errors in De of 0.3 eV and in re of 0.02 Å are found. The remaining errors at the CI level are 0.08 eV for De, 0.005 Å for re and less than 10 cm?1 for the lowest vibrational levels.  相似文献   

11.
《Chemical physics letters》1987,142(5):349-353
Complete active space MC SCF (CAS SCF) calculations followed by second-order configuration interaction (SOCI) calculations are carried out on the potential energy surfaces (bending surface, linear surfaces) of the 2Σg+ ground state of He3+. The potential minimum for the 2Σg+ state occurs at a linear geometry with HeHe bond length of 1.248 Å. The binding energy of He3+ with respect to He + He+ + He was calculated to be 2.47 eV at the SOCI level. The energy required to dissociate He3+ (2Σg+) into He2+ (2Σu+) and He(1S) is calculated to be 0.14 eV. The same level of SOCI calculations of He2+ yield a De value of 2.36 eV.  相似文献   

12.
By exciting Rb2 in a supersonic nozzle beam with a pulsed dye laser in the C 1Πu-X 1Σ+g and the D 1Πu-X 1Σ+g band system, we find evidence tor different predissociation processes The products appear as follows from the C state, Rb* (5 2P32) exclusively, and from the D state Rb*(42D32) predominantly, followcd by Rb*(5 2Pi-52S) cascade radiation In addition, a lower bound of De(Rb2X1Σ+g)? 3939± 10 cm?1 is obtained.  相似文献   

13.
Collisional deactivation of the first excited electronic 1Δg(υ = 0) state of O2 involves intersystem crossing to higher vibrational levels (υ < 5) of the electronic ground state 3Σ?g. It is followed by rapid vibrational-vibrational energy exchange which populates the first excited 3Σ?g(υ = 1) vibrational level. The suggested relaxation mechanism is supported by experimental results on the time dependence of the populations of the 1Δg(υ = 0) and 3Σ?g(υ = 1) states in liquid natural O2 and 18O2.  相似文献   

14.
Ab initio calculations are performed to obtain potential energy curves for the X1Σg+ state of Li2 and Na2 and the X2Σg+ and A2Σg+ states of their anions. The A2Σg+ M2? curves are found to intersect the X1Σg+M2 curves at low energies and are expected to play a major role in the e? + M2 → M? + M process.  相似文献   

15.
The electron affinity and first three ionization potentials of C3 are calculated using the multiconfigurational SCF and configuration interaction methods and by Möller-Plesset perturbation theory. Whereas Koopmans' theorem and SCF calculations indicate that the first cation state is 2Πu, upon inclusion of correlation effects both the 2Σu and 2Σg cation states are found to lie lower in energy. CI calculations indicate that the ground state (2Πg) anion is stable by 1.74 eV. Allowing for the error in the calculated electron affinity of the carbon atom, C3? is estimated to be stable by 2.0 eV, in excellent agreement with the 2.05 eV value determined from recent photodetachment measurements. No excited anion states are found to be bound at the equilibrium geometry of the neutral molecule.  相似文献   

16.
A model potential method is used to calculate the potential curves of a large number of states of the lithium molecule and comparisons are made with other theoretical and experimental data. Agreement is generally satisfactory. Several bound states are predicted that have not been identified experimental including a 3Σ?g state that dissociates into two excited atoms.  相似文献   

17.
The diffusion coefficient of O*2(1Δg) in O2(3Σ?g) has been measured as a function of pressure, D* = 0.201 ± 0.005 cm2 s?1 at 1 atmosphere and 298 K.  相似文献   

18.
Anhydrous Li2SeO4 crystallizes in the trigonal space group R3 with a = 13.931(2), c = 9.304(3) Å, V = 1563.7 Å3, Z = 18, Dc = 2.988 g cm?3. The unit cell transforms to the rhombohedral coordinate system as a = 8.620 Å, α = 107.81(2)°, V = 521.2 Å3, Z = 6. The structure contains selenate anions bridged by Li in the phenacite structural type. Data collection was performed at low temperature for precise placement of the Li cations which are tetrahedrally surrounded by oxygen atoms. Some problems with secondary extinction were apparent and a correction was made. The structure refined to an R value of 0.034.  相似文献   

19.
Two series of emission bands were observed for the CS2/Ar(1 : 100–500) system at 15 K with excitation at 257.3 nm. They are assigned to B3Σ?u → χ3Σ?g and B″3Πu → X3Σ?g of S2, which was formed by photodissociation of CS2, CS2 + hv → CS + S, followed by recombination of two S atoms. The B″3Πu state has been found 524 cm-1 lower in energy than B3Σ?u  相似文献   

20.
SCF computations for the ground state potential surfaces of HCN and HCN? are performed. These calculations predict that the ground state geometry of the radical anion is Re(CH) = 2.12 bohr, Re(CN) = 2.33 bohr and the bond angle θ = 121.7°. The calculations also show that the CH bond in HCN? is much weaker than in HCN and is similar to the CH bond in HCO. The computed electron affinity is ?1.95 eV. Since the minimum on the potential energy curve for the anion is above the neutral curve rapid auto-ionization should occur to HCN and an electron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号