首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work is the formulation, numerical implementation and initial application of a non-local extension of existing Gurson-based modelling for isotropic ductile damage and attendant crack growth. It is being carried out under the premise that void coalescence results not only in accelerated damage development (e.g., Needleman and Tvergaard, 1984), but also in damage delocalisation (i.e., via interaction between neighbouring Gurson RVE's). To this end, we proceed by analogy with the approach of Needleman and Tvergaard (1984) who replaced the Gurson void volume fraction f with a (local) effective damage parameter f* in the Gurson yield condition to account for the effect of void coalescence on the material behaviour. In the current case, the role of f* is taken over and generalised by an effective continuum damage field ν. A field relation for ν is formulated here in the framework of continuum thermodynamics. In the simplest case, the resulting relation is formally analogous to the inhomogeneous temperature equation in which void nucleation and growth represent (local) sources for ν and in which void coalescence takes place in a process zone whose dimension is determined by a characteristic material lengthscale. Analogous to temperature, then, ν represents an additional continuum degree-of-freedom here, resulting in a coupled deformation-damage field model. In the last part of the work, the complete model for coupled damage-deformation is implemented numerically using the finite-element method on the basis of backward-Euler integration and consistent linearisation. Using this implementation, the behaviour of the current extended Gurson-based damage model is investigated for the case of simple tension of an inhomogeneous steel block. In particular, the corresponding simulation results document quantitatively the dependence of the delocalisation of the model damage process and minimisation of mesh-dependence on the characteristic dimension of the damage process zone.  相似文献   

2.
A micro-macro approach of multiaxial fatigue in unlimited endurance is proposed. It allows one to take into account plasticity and damage mechanisms which occur at the scale of Persistent Slip Bands (PSB). The proposed macroscopic fatigue criterion, which corresponds to microcracks nucleation at the PSB-matrix interface, is derived for different homogenization schemes (Sachs, Lin-Taylor and Kröner). The role of a mean stress and of the hydrostatic pressure in high cycle fatigue is shown; in particular, in the case of Lin-Taylor scheme and linear isotropic hardening rule at microscale, one recovers the linear dependance in pressure postulated by K. Dang Van for the macroscopic fatigue criterion. This dependence is related here to the damage micro-mechanism. Finally, the particular case of affine loading is presented as an illustration. To cite this article: V. Monchiet et al., C. R. Mecanique 334 (2006).  相似文献   

3.
The aim of the present paper is to propose a polycrystalline approach in order to model the elastic–plastic behavior of an austenitic–ferritic stainless steel. In order to take into account the specific character of the steel, the multi-scale polycrystalline approach proposed by Cailletaud–Pilvin [Pilvin, P., 1990. Approches multiéchelles pour la prévision du comportement anélastique des métaux, PhD Thesis, Université Pierre et Marie Curie; Cailletaud, G., 1992. A micromechanical approach to inelastic behavior of metals. International Journal of Plasticity 8, 55–73; Cailletaud, G., Pilvin, P., 1994. Utilisation des modéles polycristallins pour lecalcul par éléments finis. Revue Européenne des Eléments Finis 3 (4), 515–541] is extended to bi-phased material. In particular, two interaction laws and two local behaviors, based on the crystallographic slip and the dislocation density evolution, are simultaneously considered. After an identification of the model parameters on simple tests (monotonous tension, tension-compression), we propose an evaluation of the predictive capabilities of the multi-scale approach for non-proportional loading paths. A good agreement is observed between simulation and experimental data.  相似文献   

4.
The present paper extends the Gurson and GLD models [Gurson, A.L., 1977. Continuum theory of ductile rupture by void nucleation and growth, Part I—yield criteria and flow rules for porous ductile media. J. Mech. Phys. Solids 99, 2–15; Gologanu, M., Leblond, J.B., Devaux, J., 1993. Approximate models for ductile metals containing non-spherical voids—case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41, 1723–1754; Gologanu, M., Leblond, J.B., Devaux, J., 1994. Approximate models for ductile metals containing non-spherical voids—case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Technol. 116, 290–297] to involve the coupled effects of void size and void shape on the macroscopic yield behavior of non-linear porous materials and on the void growth. A spheroidal representative volume element (RVE) under a remote axisymmetric homogenous strain boundary condition is carefully analyzed. A wide range of void aspect ratios covering the oblate spheroidal, spherical and prolate spheroidal void are taken into account to reflect the shape effect. The size effect is captured by the Fleck–Hutchinson phenomenological strain gradient plasticity theory [Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. In: Hutchinson, J.W., Wu, T.Y. (Eds.), Advance in Applied Mechanics, vol. 33, Academic Press, New York, pp. 295–361]. A new size-dependent damage model like the Gurson and GLD models is developed based on the traditional minimum plasticity potential principle. Consequently, the coupled effects of void size and void shape on yield behavior of porous materials and void growth are discussed in detail. The results indicate that the void shape effect on the yield behavior of porous materials and on the void growth can be modified dramatically by the void size effect and vice versa. The applied stress triaxiality plays an important role in these coupled effects. Moreover, there exists a cut-off void radius rc, which depends only on the intrinsic length l1 associated with the stretch strain gradient. Voids of effective radius smaller than the critical radius rc are less susceptible to grow. These findings are helpful to our further understanding to some impenetrable micrographs of the ductile fracture surfaces.  相似文献   

5.
Uniaxial ratcheting and fatigue failure of tempered 42CrMo steel were observed by the tests under the uniaxial stress-controlled cyclic loading with non-zero mean stress [G.Z. Kang, Y.J. Liu, Mater. Sci. Eng. A 472 (2008) 258–268]. Based on the obtained experimental results, the evolution features of whole-life ratcheting behavior and low-cycle fatigue (LCF) damage of the material were discussed first. Then, in the framework of unified visco-plasticity and continuum damage mechanics, a damage-coupled visco-plastic cyclic constitutive model was proposed to simulate the whole-life ratcheting and predict the fatigue failure life of the material presented in the uniaxial stress cycling with non-zero mean stress. In the proposed model, the damage was divided into two parts, i.e., elastic damage and plastic damage, which were described by the evolution equations with the same form but different constants, since the maximum applied stresses in most of loading cases were lower than the nominal yielding strength of the material. The ratcheting of the material was still described by employing a nonlinear kinematic hardening rule based on the Abdel-Karim–Ohno combined kinematic hardening model [M. Abdel Karim, N. Ohno, Int. J. Plast. 16 (2000) 225–240] but extended by considering the effect of damage. The maximum strain criterion combined with an elastic damage threshold was employed to determine the failure life of the material caused by two different failure modes, i.e., fatigue failure (caused by low-cycle fatigue due to plastic shakedown) and ductile failure (caused by large ratcheting strain). The simulated whole-life ratcheting behavior and predicted failure life of tempered 42CrMo steel are in a fairly good agreement with the experimental ones.  相似文献   

6.
A recent study by Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] demonstrated that some of the nonproportional ratcheting responses under stress-controlled loading histories cannot be simulated reasonably by two recent cyclic plasticity models. Two major drawbacks of the models identified were: (i) the stainless steel 304 demonstrated cyclic hardening under strain-controlled loading whereas cyclic softening under stress-controlled loading, which depends on the strain-range and which the existing models cannot describe; (ii) the change in biaxial ratcheting responses due to the change in the degree of nonproportionality were not simulated well by the models. Motivated by these findings, two modified cyclic plasticity models are evaluated in predicting a broad set of cyclic and ratcheting response of stainless steel 304. The experimental responses used in evaluating the modified models included both proportional (uniaxial) and nonproportional (biaxial) loading responses from Hassan and Kyriakides [Hassan, T., Kyriakides, S., 1994a. Ratcheting of cyclically hardening and softening materials. Part I: uniaxial behavior. Int. J. Plasticity, 10, 149–184; Hassan, T., Kyriakides, S., 1994b. Ratcheting of cyclically hardening and softening materials. Part II: multiaxial behavior. Int. J. Plasticity, 10, 185–212.] and Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] The first model studied is a macro-scale, phenomenological, constitutive model originally proposed by Chaboche et al. [Chaboche, J.L., Dang-Van, K., Cordier, G., 1979. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In: Proceedings of the Fifth International Conference on SMiRT, Div. L, Berlin, Germany, L11/3.]. This model was systematically modified for incorporating strain-range dependent cyclic hardening–softening, and proportional and nonproportional loading memory parameters. The second model evaluated is a polycrystalline model originally proposed by Cailletaud [Cailletaud, G., 1992. A micromechanical approach to inelastic behavior of metals. Int. J. Plasticity, 8, 55–73.] based on crystalline slip mechanisms. These two models are scrutinized against simulating hysteresis loop shape, cyclic hardening–softening, cross-effect, cyclic relaxation, subsequent cyclic softening and finally a broad set of ratcheting responses under uniaxial and biaxial loading histories. The modeling features which improved simulations for these responses are elaborated in the paper. In addition, a novel technique for simulating both the monotonic and cyclic responses with one set of model parameters is developed and validated.  相似文献   

7.
To some extent, continua can no longer be considered as free of defects. Experimental observations on natural rubber revealed the existence of distributed microscopic defects which grow upon cyclic loading. However, these observations are not incorporated in the classical fatigue life predictors for rubber, i.e. the maximum principal stretch, the maximum principal stress and the strain energy. Recently, Verron et al. [Verron, E., Le Cam, J.B., Gornet, L., 2006. A multiaxial criterion for crack nucleation in rubber. Mech. Res. Commun. 33, 493–498] considered the configurational stress tensor to propose a fatigue life predictor for rubber which takes into account the presence of microscopic defects by considering that macroscopic crack nucleation can be seen as the result of the propagation of microscopic defects. For elastic materials, it predicts privileged regions of rubber parts in which macroscopic fatigue crack might appear. Here, we will address our interest to a broader context. Rubber is assumed to exhibit inelastic behavior, characterized by hysteresis, under fatigue loading conditions. The configurational mechanics-based predictor is modified to incorporate inelastic constitutive equations. Afterwards, it is used to predict fatigue life. The emphasis of the present work is laid on the prediction of the well-known fatigue life improvement in natural rubber under tension–tension cyclic loading.  相似文献   

8.
An extension of the Gurson model that incorporates damage development in shear is used to simulate the tension–torsion test fracture data presented in Faleskog and Barsoum (2013) (Part I) for two steels, Weldox 420 and 960. Two parameters characterize damage in the constitutive model: the effective void volume fraction and a shear damage coefficient. For each of the steels, the initial effective void volume fraction is calibrated against data for fracture of notched round tensile bars and the shear damage coefficient is calibrated against fracture in shear. The calibrated constitutive model reproduces the full range of data in the tension–torsion tests thereby providing a convincing demonstration of the effectiveness of the extended Gurson model. The model reinforces the experiments by highlighting that for ductile alloys the effective plastic strain at fracture cannot be based solely on stress triaxiality. For nominally isotropic alloys, a ductile fracture criterion is proposed for engineering purposes that depends on stress triaxiality and a second stress invariant that discriminates between axisymmetric stressing and shear dominated stressing.  相似文献   

9.
This paper summarizes our recent studies on modeling ductile fracture in structural materials using the mechanism-based concepts. We describe two numerical approaches to model the material failure process by void growth and coalescence. In the first approach, voids are considered explicitly and modeled using refined finite elements. In order to predict crack initiation and propagation, a void coalescence criterion is established by conducting a series of systematic finite element analyses of the void-containing, representative material volume (RMV) subjected to different macroscopic stress states and expressed as a function of the stress triaxiality ratio and the Lode angle. The discrete void approach provides a straightforward way for studying the effects of microstructure on fracture toughness. In the second approach, the void-containing material is considered as a homogenized continuum governed by porous plasticity models. This makes it possible to simulate large amount of crack extension because only one element is needed for a representative material volume. As an example, a numerical approach is proposed to predict ductile crack growth in thin panels of a 2024-T3 aluminum alloy, where a modified Gologanu–Leblond–Devaux model [Gologanu, M., Leblond, J.B., Devaux, J., 1993. Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric prolate ellipsoidal cavities. J. Mech. Phys. Solids 41, 1723–1754; Gologanu, M., Leblond, J.B., Devaux, J., 1994. Approximate models for ductile metals containing nonspherical voids – Case of axisymmetric oblate ellipsoidal cavities. J. Eng. Mater. Tech. 116, 290–297; Gologanu, M., Leblond, J.B., Perrin, G., Devaux, J., 1995. Recent extensions of Gurson’s model for porous ductile metals. In: Suquet, P. (Ed.) Continuum Micromechanics. Springer-Verlag, pp. 61–130] is used to describe the evolution of void shape and void volume fraction and the associated material softening, and the material failure criterion is calibrated using experimental data. The calibrated computational model successfully predicts crack extension in various fracture specimens, including the compact tension specimen, middle crack tension specimens, multi-site damage specimens and the pressurized cylindrical shell specimen.  相似文献   

10.
A constitutive model with Ohno–Wang kinematic hardening rule is developed and employed to simulate the isothermal cyclic behavior of Sn–Pb solder under uniaxial and torsional loading. An implicit constitutive integration scheme is presented for inelastic flow of solder. Then a modified low cycle fatigue life prediction model is put forward in which the sum of maximum shear strain range and normal strain range based on the critical plane concept is adopted to replace the uniaxial strain range used by Stolkarts et al. [Stolkarts, V., Keer, L.M., Fine, M.E., 1999. Damage evolution governed by microcrack nucleation with application to the fatigue of 63Sn–37Pb solder. J. Mech. Phys. Solids 47, 2451–2468]. Comparison of the experimental results and simulation verifies that the stress strain hysteresis loops and peak stress decline curve of solder can be reasonably modeled over a wide range of loading conditions with implement of damage coupled constitutive model, and the lifetime estimations of 63Sn37Pb solder based on the assumption of microcrack nucleation governed damage is effective to provide a conservative prediction.  相似文献   

11.
12.
In this paper a crystal plasticity-based crack nucleation model is developed for polycrystalline microstructures undergoing cyclic dwell loading. The fatigue crack nucleation model is developed for dual-phase titanium alloys admitting room temperature creep phenomenon. It is a non-local model that accounts for the cumulative effect of slip on multiple slip systems, and involves evolving mixed-mode stresses in the grain along with dislocation pileups in contiguous grains. Rate dependent, highly anisotropic behavior causes significant localized stress concentration that increases with loading cycles. The crystal plasticity finite element (CPFE) model uses rate and size-dependent anisotropic elasto-crystal plasticity constitutive model to account for these effects. Stress rise in the hard grain is a consequence of time-dependent load shedding in adjacent soft grains, and is the main cause of crack nucleation in the polycrystalline titanium microstructure. CPFE simulation results are post-processed to provide inputs to the crack nucleation model. The nucleation model is calibrated and satisfactorily validated using data available from acoustic microscopy experiments for monitoring crack evolution in dwell fatigue experiments.  相似文献   

13.
Elastic–plastic solutions of an anti-plane crack in an infinite body are used in conjunction with a continuum damage model to describe the conditions necessary for the onset of crack instability, fatigue crack propagation due to cyclic loading, and rates of crack growth due to time dependent events. A power law relates the stress to the strain of the material. The damage, which invokes nucleation, growth and coalescence of microvoids due to elevated strain, is confined to the plastic zone surrounding the crack tip. For applied loading below the yield stress, the small-scale and large-scale yielding solutions are used to determine the influence of strain hardening on crack instability and failure. Crack growth due to cyclic loading and time-dependent deformations are studied using the small-scale yielding solution of the deformation theory of plasticity.  相似文献   

14.
A population of several spherical voids is included in a three-dimensional, small scale yielding model. Two distinct void growth mechanisms, put forth by [Int. J. Solids Struct. 39 (2002) 3581] for the case of a two-dimensional model containing cylindrical voids, are well contained in the model developed in this study for spherical voids. A material failure criterion, based on the occurrence of void coalescence in the unit cell model, is established. The critical ligament reduction ratio, which varies with stress triaxiality and initial porosity, is used to determine ligament failure between the crack tip and the nearest void. A comparison of crack initiation toughness of the model containing cylindrical voids with the model containing spherical voids reveals that the material having a sizeable fraction of spherical voids is tougher than the material having cylindrical voids. The proposed material failure determination method is then used to establish the fracture resistance curve (JR curve) of the material. For a ductile material containing a small volume fraction of microscopic voids initially, the void by void growth mechanism prevails, which results in a JR curve having steep slope. On the other hand, for a ductile material containing a large volume fraction of initial voids, the multiple voids interaction mechanism prevails, which results in a flat JR curve. Next, the effect of T-stress on fracture resistance is examined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are briefly discussed.  相似文献   

15.
Internal state variable rate equations are cast in a continuum framework to model void nucleation, growth, and coalescence in a cast Al–Si–Mg aluminum alloy. The kinematics and constitutive relations for damage resulting from void nucleation, growth, and coalescence are discussed. Because damage evolution is intimately coupled with the stress state, internal state variable hardening rate equations are developed to distinguish between compression, tension, and torsion straining conditions. The scalar isotropic hardening equation and second rank tensorial kinematic hardening equation from the Bammann–Chiesa–Johnson (BCJ) Plasticity model are modified to account for hardening rate differences under tension, compression, and torsion. A method for determining the material constants for the plasticity and damage equations is presented. Parameter determination for the proposed phenomenological nucleation rate equation, motivated from fracture mechanics and microscale physical observations, involves counting nucleation sites as a function of strain from optical micrographs. Although different void growth models can be included, the McClintock void growth model is used in this study. A coalescence model is also introduced. The damage framework is then evaluated with respect to experimental tensile data of notched Al–Si–Mg cast aluminum alloy specimens. Finite element results employing the damage framework are shown to illustrate its usefulness.  相似文献   

16.
Brittle materials randomly reinforced with a low volume fraction of strong, stiff and ductile fibers are considered, with specific reference to fiber-reinforced cements and concrete. Visible cracks in such materials are accompanied by a surrounding damage zone – together these constitute a very complex “crack system”. Enormous effort has been put into trying to understand the micromechanics of such systems. Almost all of these efforts do not deal with the “crack system” propagation behavior as a whole. The propagation process of such a “crack system” includes propagation of the visible crack and the growth of the damage zone. Propagation may take place by lengthening of the visible crack together with the concomitant lengthening of the surrounding damage zone, or simply by broadening of the damage zone while the visible crack length remains unchanged – or simultaneously by growth of both types. A phenomenological completely theoretical model (for an ideal material) is here proposed which can serve to examine the propagation process by means of energy principles, without recourse to the microscopic details of the process. An application of this theoretical approach is presented for the case of a damage zone evolving with a rectangular shape. This shape is chosen because it is expected that it will illustrate the nature of damage evolution and because the computational procedure necessary to follow the growth is the most straightforward.  相似文献   

17.
In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional adjustment.  相似文献   

18.
The energy conservation law is applied to formulate the ductile and brittle creep fracture criterion for metallic materials. The criterion contains a summary of heat and latent energies. Assuming that the heat energy is given out so it has no effect on the fracture process, the ductile creep fracture criterion is simplified. To take into account the evaluation of the damage state of materials the compressibility condition is introduced and the brittle creep fracture law is formulated.  相似文献   

19.
The predictive capabilities of the shear-modified Gurson model [Nielsen and Tvergaard, Eng. Fract. Mech. 77, 2010] and the Modified Mohr-Coulomb (MMC) fracture model [Bai and Wierzbicki, Int. J. Fract. 161, 2010] are evaluated. Both phenomenological fracture models are physics-inspired and take the effect of the first and third stress tensor invariants into account in predicting the onset of ductile fracture. The MMC model is based on the assumption that the initiation of fracture is determined by a critical stress state, while the shear-modified Gurson model assumes void growth as the governing mechanism. Fracture experiments on TRIP-assisted steel sheets covering a wide range of stress states (from shear to equibiaxial tension) are used to calibrate and validate these models. The model accuracy is quantified based on the predictions of the displacement to fracture for experiments which have not been used for calibration. It is found that the MMC model predictions agree well with all experiments (less than 4% error), while less accurate predictions are observed for the shear-modified Gurson model. A comparison of plots of the strain to fracture as a function of the stress triaxiality and the normalized third invariant reveals significant differences between the two models except within the vicinity of stress states that have been used for calibration.  相似文献   

20.
The problem of propagation of a longitudinal shear crack in a medium with a random field of internal stresses is considered and solved with the use of the theory of quasi-brittle failure. Local criterion of crack propagation under cyclic loading is derived, and its application as a model of fatigue crack propagation is investigated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 11, No. 3, pp. 117–119, May–June, 1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号