首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Measurements of the complex permittivity were used to study miscibility and phase behavior in blends of poly(vinyl chloride) (PVC) with two random ethylene—vinyl acetate (EVA) copolymers containing 45 and 70 wt % of vinyl acetate. The dielectric β relaxation of the pure polymers and blends was followed as a function of temperature and frequency for different blend compositions and thermal treatments. Blends of EVA 70/PVC were found to be miscible for compositions of about 25% EVA 70 and higher. Blends of lower EVA 70 content showed evidence of two-phase behavior. EVA 45/PVC blends were found to be miscible only at the composition extremes; at intermediate compositions these blends were two-phase, partially miscible. Both blend systems showed lower critical solution temperature behavior. Phase separation studies revealed that in the EVA 45/PVC blends, PVC was capable of diffusing into the higher Tg phase at temperatures below the Tg of the upper phase. In the blends, ion transport losses were significant above the loss peak temperatures, and in the two-phase systems, often obscured the upper temperature loss process. It was shown possible, however, to correct the loss curves for this transport contribution.  相似文献   

2.
反应诱导相分离制备新型温度敏感光学材料   总被引:2,自引:0,他引:2  
反应诱导相分离制备新型温度敏感光学材料李兴林陈文杰江明(复旦大学高分子科学系和国家教委聚合物分子工程实验室上海200433)关键词高分子合金,旋节线相分离,光散射,温度敏感光学性能温度敏感光学材料是一种具有广泛用途的功能材料,可用作记录材料、显...  相似文献   

3.
The mild UV aging of ethylene-vinyl acetate copolymer (EVA) with two vinyl acetate (VAc) contents (14, 18 wt%) was performed in a xenon arc source chamber. The degradation mechanism was analyzed via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), gel content and high temperature gel permeation chromatography (HTGPC). Photo-chemically induced deterioration was first initiated from vulnerable VAc units. Ketone formation preceded lactone generation, especially in EVA with high VAc content. Un-stable structures induced further degradation in the main chain. Competition between radiation induced cross-linking and chain scission in EVA was observed, and the later was confirmed to be dominant. Higher VAc content resulted in remarkable drop in molecular weight and growth in polydispersity. Apparent re-arrangement in crystallisation and consequent decrease in thermal stability are discussed through differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA), which accorded well with the chain scission tendency. Interaction between photo-chemical degradation and physical annealing accounted for the first increasing then decreasing tendency in the mechanical properties of both EVAs.  相似文献   

4.
The effect of liquid–liquid phase‐separation (LLPS) on the crystallization behavior and mechanical properties of poly(ethylene‐ran‐vinyl acetate) (EVA) with various amounts of vinyl acetate and paraffin wax blend was investigated. The blend of EVA‐H (9.5% vinyl acetate) and the wax became homogeneous at temperatures greater than its upper critical solution temperature (UCST) (98°C), and an LLPS was observed between UCST and the melting point of 88°C for EVA‐H in the blend. The existence of the LLPS is attributed to the relatively large amount of the hydrophilic component of vinyl acetate in EVA, although the molecular weight of the wax was just 560. However, LLPS did not occur for the EVA/wax blend when the content of vinyl acetate in EVA was less than 3%. This behavior was explained by using the Flory–Huggins lattice model with an effective interaction parameter. The degree of crystallinity of EVA‐H in the EVA‐H/wax blend, judged from a melting endothermic peak in differential scanning calorimeter (DSC) thermograms obtained during heating runs, decreased with increasing duration time in the LLPS region. The flexural modulus of the EVA/wax blend became maximum at certain blend composition (about 30 ∼ 40 wt % EVA depending upon the amount of vinyl acetate). This behavior can be explained by the fact that this blend composition has the largest relative degree of crystallinity of EVA measured by DSC and wide‐angle X‐ray scattering method. We found that the flexural modulus of the binder itself is directly related to that of a feedstock consisting of larger amounts of metal powder and the binder, which can help someone to develop a suitable binder system for a powder injection molding process. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1991–2005, 1999  相似文献   

5.
Association behavior of ethylene vinyl acetate (EVA) copolymer in foursolvents 1, 2-dichloroethane (DCE), cyclohexane (CYH), xylene (XYL) and chloroform(CF) has been investigated by dilute solution viscometry The critical association concen-tration (C_A) was determined at which the incipient decrease in slope of the η_(sp)/C~ Ccurve in solutions at the dilute regime. Our results showed that whether the CA couldexist depends on solvent property. The values of CA in DCE increase with increasing, oftemperature and vinyl acetate (VA) content in EVA and decreasing of molecular weight ofEVA.  相似文献   

6.
The blend miscibility of cellulose alkyl esters, mainly butyrate (CB) and acetate butyrate (CAB), with synthetic homo- and copolymers comprising N-vinyl pyrrolidone (VP) and/or vinyl acetate (VAc) units, i.e., PVP, PVAc, and P(VP-co-VAc), was examined by differential scanning calorimetry. A miscibility map for the CB/vinyl polymer systems was constructed as a function of the degree of substitution (DS) of CB and the VP fraction of the mixing component. CBs were immiscible with PVAc regardless of the DS used (2.11–2.94), but miscible or immiscible with PVP depending on whether the butyryl DS was <2.5 or >2.5. The critical value of DS≈2.5 is lower than the corresponding one (DS≈2.8) evaluated formally for cellulose acetate (CA)/PVP blend series. This lowering is ascribable to an effect of steric hindrance of the bulky butyryl substituents, leading to suppression of the hydrogen-bonding interactions, as a driving factor for miscibility attainment, between residual hydroxyls of CB and carbonyl groups of PVP. The CB/vinyl copolymer system imparted a ‘miscibility window’ in which the VP/VAc composition participated; viz., CBs of DS≈2.54–2.94 were miscible with some P(VP-co-VAc)s of 30–70Â mol% VP fractions, in spite of the immiscibility with both PVP and PVAc homopolymers. The result was interpreted in terms of another inter-component attraction derived from repulsion between the monomer ingredients constituting the vinyl copolymer component. For CAB/P(VP-co-VAc) blends, it was observed that the VP/VAc range forming such a miscibility window became further expanded, compared with the corresponding series of CB blends. Fourier transform infrared and solid-state 13C NMR spectroscopy revealed not only the presence or absence of the intermolecular hydrogen-bonding formation, determined according to the lower or higher DS of the cellulose ester component in the blends considered, but also a difference in the mixing scale between the polymer pairs regarded as miscible by the thermal analysis.  相似文献   

7.
Controlled radical polymerization of ethylene using different commercially available, cheap, and non-toxic iodo alkyls is performed by iodine transfer polymerization (ITP) under mild conditions (≤100 °C and ≤200 bar). The formed well-defined iodo end-capped polyethylene (PE−I) species is very stable upon storage. Narrow molar-mass distributions (dispersities around 1.6) were obtained up to number average molar masses of 7300 g mol−1. The ethylene copolymerization by ITP (ITcoP) with vinyl acetate allowed to form a broad range of poly(ethylene-co-vinyl acetate) (EVA) containing from 0 to 85 mol % of VAc unit. In addition, EVA-b-PE block copolymers or EVA-b-EVA gradient block copolymers with different content of VAc in the blocks were obtained for the first time using ITP. Finally, reactivity trends were explored by a theoretical mechanistic study. This highly versatile synthetic platform provides a straightforward access to a diverse range of well-defined PE based polymer materials.  相似文献   

8.
The effect of liquid–liquid phase separation (LLPS) on the crystallization behavior of poly(ethylene‐ran‐vinyl acetate) with a vinyl acetate content of 9.5 wt % (EVA‐H) in the critical composition of a 35/65 (wt/wt) EVA‐H/paraffin wax blend was investigated by small‐angle light and X‐ray scattering methods and rheometry. This blend exhibited an upper critical solution temperature (UCST) of 98°C, and an LLPS was observed between the UCST and the melting point of 88°C for the EVA‐H in the blend. As the duration time in the LLPS region increased before crystallization at 65°C, both the spherulite size and the crystallization rate of the EVA‐H increased, but the degree of the lamellar ordering in the spherulite and the degree of crystallinity of the EVA‐H in the blend decreased. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 707–715, 2000  相似文献   

9.
The effect of shear stress, provided by so-called dynamic-packing injection molding, on crystal morphology and phase behavior was investigated for high-density polyethylene (HDPE) in blends with ethylene vinyl acetate (EVA) of various viscosities and vinyl acetate (VA) contents, with the aid of differential scanning calorimetry, two-dimensional small-angle X-ray scattering (2D SAXS), and scanning electron microscopy (SEM). A shish-kebab pattern was found in the oriented zones of dynamic samples, and the ratio of shish to kebab increased as a function of the EVA content in the blends up to 20 wt %, regardless of the VA content. This showed that molecules of HDPE could easily be stretched to form a shish structure in the presence of EVA. Moreover, a large increase in the long spacing, characterized by 2D SAXS measurements, was achieved because of the presence of EVA. The SEM results showed an obvious decrease in the domain size of the EVA phase under the effect of shear stress. All these results suggested shear-induced mixing between HDPE and EVA, in that ethylene segments of EVA molecules could be forged in the shish structure during shear and the other fractions of EVA were located in the amorphous regions between the adjacent lamellae of HDPE. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1831–1840, 2004  相似文献   

10.
The homopolymerization of a series of alkyl vinyl sulfoxides (CH2[dbnd]CHSOR; R = CH3 (MVSO), C2H5 (EVSO), t-C4H9 (BVSO)) and their copolymerization with vinyl acetate (VAc) with 2,2′-azobisisobutyronitrile (AIBN) as initiator at 60°C was attempted. MVSO was found to homopolymerize radically, but EVSO and BVSO were not. Poly-MVSO is soluble in chloroform, methanol, DMSO, and water, but insoluble in acetone and benzene. MVSO and EVSO were found to copolymerize with VAc, but BVSO was not. The copolymerization parameters obtained for both systems were as follows; r1(MVSO) = 2.23, r2 (VAc) = 0.09, and r1(EVSO) = 3.40, r2 (VAc) = 0.11, respectively. MVSO/vinyl alcohol (VA) copolymers were obtained through the saponification of MVSO/VAc copolymers by sodium hydroxide in methanol. The solubility of MVSO/VAc and of MVSO/VA copolymers toward various solvents was examined, and it was observed that the sulfoxide comonomer has a tendency to give amphiphilicit to poly(vinyl acetate) and poly(vinyl alcohol). The 24 mol% MVSO containing VAc copolymer is soluble in both benzene and water.  相似文献   

11.

The effect of ethylene vinyl acetate (EVA) concentration and vinyl acetate (VA) content of EVA on the mechanical, morphological, and rheological properties of bio-based high-density polyethylene (BioPE)/EVA blends was investigated. The blends were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and rheological measurements under oscillatory shear flow. The degree of crystallinity of BioPE decreased with the increase in the EVA concentration and was unaffected with the increase in the VA content. DMTA results showed a decrease in the storage modulus (E′) with the increase in EVA content and that the BioPE/EVA19 blends showed higher E′ values than BioPE/EVA28 blend. The impact strength substantially increased with the addition of EVA concentration above 5 mass% and was higher for the blends containing the highest VA content. The blends containing a higher content of VA exhibited the higher EVA dispersed phase domain size, which increased with the increase in EVA concentration. The complex viscosity increased with the increase in the EVA content, being higher for the BioPE/EVA blends containing higher VA content. The storage modulus increased, at low frequencies, with the increase in the EVA content and can be ascribed to the increase in the EVA dispersed phase domain size.

  相似文献   

12.
In this comparative study, the effect of carbon black (CB) on the thermal ageing characteristics of poly(ethylene‐co‐vinyl acetate) (EVA) was investigated. EVA, containing 13% vinyl acetate (VA), and poly(ethylene‐co‐vinyl acetate)/carbon black mixture (EVA/CB) containing 13% VA and 1% CB were aged at 85°C in air up to 30 weeks. Sol‐gel analysis experiments were made to determine the percentage gelation of both virgin and aged samples. FT‐IR measurements were performed to follow the chemical changes which took place in the samples during ageing. Dynamic and isothermal thermogravimetric studies were performed for determination of the thermal stabilities of virgin and aged samples. Sol‐gel analysis results showed that EVA itself has a tendency to form a gel under thermal treatment, whereas EVA/CB never becomes a gel when being thermally aged under the same conditions. As a result of FT‐IR measurements, some oxidation products such as ketone, lactone and vinyl species were observed through thermal ageing of EVA. It is also clear that these kind of oxidation products did not appear to a considerable extent in EVA/CB. Thermal analysis experiments exhibit that thermal stability of EVA decreased through thermal ageing; whereas that of EVA/CB remained almost unchanged. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
The degradation of ethylene vinyl acetate (EVA) copolymers was compared with low density polyethylene (LDPE), poly(vinyl acetate) (PVAc) and poly(vinyl chloride) (PVC) using FTIR, UV-visible and fluorescence spectroscopy as well as thermal and rheological analyses. Thermal, thermo-oxidative and photo-oxidative studies were conducted. Thermo-oxidation below 180 °C shows more similarities between EVA and LDPE. The luminescence spectra of degraded EVA and LDPE were almost identical but very different to that of PVAc. UV-vis analysis showed that the polyenes present in aged PVC were unlikely to be the same species responsible for the observed colour formation in aged EVA. It is suggested that they are polyconjugated carbonyl products. Rheological analysis also showed the evolution of crosslinking reactions during thermo-oxidation. FTIR studies after thermal degradation in inert conditions 290 °C showed complete loss of the ester functionality and associated lactone formation along with some evidence for ketonic and unsaturated carbonyl groups. Degradation in air at 180 °C, however, revealed that loss of the ester group was not so marked, with PVAc exhibiting the greatest stability. This was in line with the induction time to onset of autocatalytic carbonyl growth at 180 °C; the latter showed an apparent exponential decrease with increasing vinyl acetate content up to 28% w/w. Fluorescence analysis produced trends that complemented those of carbonyl index; the time to decomposition of initial fluorescent α,β-unsaturated carbonyl species coincided with the time to onset of carbonyl growth. Furthermore, the rate of formation of the new fluorescent species produced in EVA, and LDPE was similar to that of carbonyl growth. These new fluorescent species are therefore likely to be di- or tri-carbonyl products.  相似文献   

14.
Blend miscibility of cellulose propionate (CP) with synthetic copolymers comprising N-vinyl pyrrolidone (VP) and vinyl acetate (VAc) units was examined, and a data map was constructed as a function of the degree of substitution (DS) of CP and the VP fraction in the copolymer component. Results of differential scanning calorimetry and Fourier transform infrared measurements indicated that the pairing of CP/P(VP-co-VAc) formed a miscible or immiscible blend system according to the balance in effectiveness of the following factors: (1) hydrogen bonding between residual hydroxyls of CP and VP carbonyls of P(VP-co-VAc); (2) steric hindrance of propionyl side-groups to the interaction specified in (1); (3) intramolecular repulsion between the two units constituting the vinyl copolymer; and, additionally, (4) structural affinity between two segmental moieties involving the propionyl group and VAc unit, respectively. The factor 3 inducing intercomponent attraction is responsible for the appearance of a so-called “miscibility window” in the miscibility map, and the factor 4 substantially expands the miscible region whole, wider relative to those in the maps for the corresponding blend series based on cellulose acetate and butyrate. In further refined estimation by dynamic mechanical analysis and T 1ρ H quantification in solid-state 13C NMR, it was found that the miscible blends of hydrogen-bonding type (using CPs of DS < 2.7) were completely homogeneous on a scale within a few nanometers, whereas the polymer pairs situated in the window region (using CPs of DS > 2.7) formed blends exhibiting a somewhat larger size of heterogeneity (ca. 5–20 nm).  相似文献   

15.
Summary: The reversible addition–fragmentation chain transfer (RAFT) random copolymerization of N-vinylcarbazole (NVC) and vinyl acetate (VAc) was carried out using s-benzyl-o-ethyl dithiocarbonate (BED) as the chain transfer agent and 2,2′-azoisobutyronitrile (AIBN) as the initiator in 1,4-dioxane solution at 70 °C. The polymerization showed the characteristics of ‘living’ free radical polymerization behaviors: first order kinetics, linear relationships between molecular weight and conversion, and narrow polydispersity of the polymers. The reactivity ratios of NVC and VAc were calculated via the Kelen–Tudos (KT) and non-linear error in variable (EVM) methods and showed as r1 = 1.938 ± 0.191, r2 = 0.116 ± 0.106. The thermal behavior of the copolymers with different content of NVC and VAc was investigated by DSC and TGA. The results showed that the introduction of a VAc segment into copolymer significantly reduced the Tg of the NVC homopolymers. FT-IR spectra, fluorescence spectra, and cyclic voltammetric behavior of these copolymers were also measured and compared with those of NVC homopolymers. The copolymers showed similar oxidative behavior to the NVC homopolymer. However, there was only one reductive potential peak shown for the copolymers at about 0.058 V.  相似文献   

16.
半结晶乙烯 醋酸乙烯酯共聚物 (EVA)是扩散控制药物释放体系中使用最多的聚合物 ,它具有生物相容性好 ,加工成型方便 ,机械性能好及理化性质稳定等特点 ,是经FDA批准的可用于人体的高分子材料之一 ,已广泛应用于宫内给药体系 ,眼用给药体系 ,透皮给药体系及植入给药体系等 ,并且已有商品化的以EVA为基质的药物控制释放系统[1~ 3 ] ,然而对于小分子药物在半结晶EVA共聚物中的扩散机理却少见报道 .本文将自由体积理论应用于EVA基质型药物扩散控制释药体系 ,阐明了小分子药物在半结晶EVA聚合物中的扩散系数随共聚物组成的…  相似文献   

17.
The nylon 1010/ethylene‐vinyl acetate rubber (EVM)/maleated ethylene‐vinyl acetate copolymers (EVA‐g‐MAH) ternary blends were prepared. The effect of EVM/EVA‐g‐MAH ratio on the toughness of blends was examined. A super tough nylon 1010 blends were obtained by the incorporation of both EVM and EVA‐g‐MAH. Impact essential work of fracture (EWF) model was used to characterize the fracture behavior of the blends. The nylon/EVM/EVA‐g‐MAH (80/15/5) blend had the highest total fracture energy at a given ligament length (5 mm) and the highest dissipative energy density among all the studied blends. Scanning electron microscopy images showed the EVM and EVA‐g‐MAH existed as spherical particles in nylon 1010 matrix and their size decreased gradually with increasing EVA‐g‐MAH content. Large plastic deformation was observed on the impact fracture surface of the nylon/EVM/EVA‐g‐MAH (80/15/5) blend and related to its high impact strength. Then with increasing EVA‐g‐MAH proportion, the matrix shear yielding of nylon/EVM/EVA‐g‐MAH blends became less obvious. EVM and EVA‐g‐MAH greatly increased the apparent viscosity of nylon 1010, especially at low shear rates. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 877–887, 2009  相似文献   

18.
The thermodynamic and morphological behaviors of poly(octadecyl acrylate) (PODA) with flexible ethylene-co-vinyl acetate copolymer (EVA) with a controlled amount of vinyl acetate units in the copolymer were investigated over the entire composition region by thermal analysis, Fourier transform infrared (FTIR) spectroscopy, x-ray diffraction, optical microscopy, and light scattering. Thermal analysis revealed that the EVA portion interferes with the side chain crystallization of PODA, as the number of crystallized methylene units in PODA was calculated from the heat of fusion of the paraffinic side chain crystals. The hexagonal packing of side chains was also confirmed by FTIR and x-ray diffraction. Optical microscope studies showed a homogeneous melt state beyond the melting temperature of EVA, but clearly showed two phases over the whole range of composition in EVA20, EVA40, and EVA50/PODA blends after the side chain crystallization of PODA. Light scattering showed the single circular halo as the evidence of phase separation when the samples were cooled to below the crystallization temperature. The changes in crystallization cannot be accounted for by the miscibility, because liquid-liquid phase separation competes with crystallization. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
邹其超  彭顺金  陈胜洲 《色谱》2000,18(1):17-20
 用反相气相色谱法测定了聚氯乙烯(PVC)/ 乙烯-醋酸乙烯共聚物(EVA)共混体系中分子间表观热力学相互作用参数χ′23,并以χ′23 为判定依据,研究了共混物的相溶性。 初步探讨了共混物的组成、聚合物分子 链结 构、温度与χ′23的关系以及探针分子性质 对χ′23参数的影响。结果表明:χ[ HT6〗′23值能够准确有效地判定PVC与EVA共混物的 相溶性,醋酸乙烯质量分数低的EVA与PVC的共混物是热力学不相溶的;而醋酸乙烯质量 分数中等的EVA与PVC的共混物则具有部分相溶性。结果与其它方法得到的结论是一致的 。  相似文献   

20.
利用~1H-NMR研究HDPE/PET/EVA共混体系的酯交换反应   总被引:3,自引:0,他引:3  
本文在选用EVA作为HDPE/PET共混体系增容剂的基础上 ,通过双螺杆反应挤出熔融加工过程 ,促使EVA侧基上的酯基官能团与PET组分主链上的酯基在适当催化剂———有机金属化合物存在的条件下发生酯交换反应 .1H NMR结果表明 ,酯交换反应的产生在共混体系界面原位形成接枝或交联的PET EVA共聚物 ,且主要是以生成接枝共聚物的反应为主 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号