首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
通过分子动力学模拟,观察到[001]取向的四方氧化锆纳米柱在拉伸载荷下具有两个线弹性变形的应力-应变关系.这一现象是四方结构向单斜结构相变的结果 .为了进一步阐明应力-应变曲线,进行了包括晶体结构分析和原子应变计算在内的详细研究.晶格取向强烈影响塑性变形机制,即[001]和[111]取向的纳米柱在拉伸载荷下经历相变,而沿[110]取向的纳米柱导致脆性断裂.观察到显著的温度效应,随着温度从300K升高到1500K,弹性模量从573.45GPa线性降低到482.65GPa.此外,还用轻推弹性带(NEB)理论估算了相变能垒,观察到相变能垒随温度的升高而降低.这一工作将有助于加深对氧化锆的四方相到单斜相转变和纳米尺度力学行为的理解.  相似文献   

2.
利用分子动力学模拟方法研究了拉伸荷载作用下晶粒尺寸对纳米多晶铁变形机制的影响.研究结果表明杨氏模量随着晶粒尺寸的减小而减小.当晶粒尺寸小于15.50 nm时,纳米多晶铁的峰值应力和晶粒尺寸之间遵循反常的Hall-Petch关系,此时晶粒旋转和晶界迁移是其塑性变形的主要变形机制;随着晶粒尺寸的增大,变形孪晶和位错滑移在其塑性变形过程中逐渐占据主导地位.裂纹的形成是导致大晶粒尺寸模型力学性能降低的主要因素.纳米多晶铁在塑性变形中会出现孪晶界的迁移和退孪晶现象.此外还研究了温度对纳米多晶铁变形机制的影响.  相似文献   

3.
袁林  敬鹏  刘艳华  徐振海  单德彬  郭斌 《物理学报》2014,63(1):16201-016201
纳米尺度金属Ag以其独特的导电和导热性,广泛应用于微电子、光电子学、催化等领域,特别是在纳米微电极和纳米器件方面的应用.本文采用分子动力学方法模拟了不同晶粒尺寸下多晶银纳米线的拉伸变形行为,详细分析了晶粒尺寸对多晶银纳米线弹性模量、屈服强度、塑性变形机理的影响.发现当晶粒尺寸小于13.49 nm时,多晶Ag纳米线呈现软化现象,出现反Hall-Petch关系,此时的塑性变形机理主要以晶界滑移、晶粒转动为主,变形后期形成五重孪晶;当晶粒尺寸大于13.49 nm时,塑性变形以位错滑移为主,变形后期产生大量的孪晶组织.  相似文献   

4.
采用分子动力学方法,模拟了不同加载速度、不同温度下单晶ZnO、TiO_2纳米线的拉伸破坏过程.通过模拟结果,对比、分析了两种单晶金属氧化物纳米线拉伸力学特性的差异.研究表明,1)ZnO纳米线的断裂机制为:表面微裂纹-微孔-微裂纹与微孔贯穿-断裂,而TiO_2纳米线的断裂机制为:局部屈服-颈缩-断裂;2)TiO_2纳米线的承载能力优于ZnO纳米线,而承受变形的能力劣于ZnO纳米线;3)温度较低的情况下,纳米线的抗拉性能较好;加载速度越高,纳米线的抗载性能越好,而抗变形能力越差.  相似文献   

5.
冲击加载下孔洞诱导相变形核分析   总被引:1,自引:0,他引:1       下载免费PDF全文
邵建立  王裴  秦承森  周洪强 《物理学报》2008,57(2):1254-1258
用分子动力学方法模拟了冲击加载(沿[001]向)下单晶Fe中孔洞诱导相变形核及生长过程,并分析了初始温度对这一生长过程的影响.数值模拟显示:1) 相变形核首先出现在孔洞周围的(110)和(110)面上,并分别沿[110],[110]向和[110],[110]向生长成片状,之后核的生长方向则变为沿〈111〉向,形成“V”形板条状新相颗粒;2) 在相同冲击压力下,初始温度为300 K时在新相晶核边缘出现许多核胚,生成的新相颗粒比60 K时明显减小.这些现象表明,孔洞诱导相变形核及生长过程沿着特定晶向进行,而初 关键词: 相变 孔洞 分子动力学  相似文献   

6.
用分子动力学方法模拟了冲击加载(沿[001]向)下单晶Fe中孔洞诱导相变形核及生长过程,并分析了初始温度对这一生长过程的影响.数值模拟显示:1) 相变形核首先出现在孔洞周围的(110)和(110)面上,并分别沿[110],[110]向和[110],[110]向生长成片状,之后核的生长方向则变为沿〈111〉向,形成“V”形板条状新相颗粒;2) 在相同冲击压力下,初始温度为300 K时在新相晶核边缘出现许多核胚,生成的新相颗粒比60 K时明显减小.这些现象表明,孔洞诱导相变形核及生长过程沿着特定晶向进行,而初  相似文献   

7.
温度对金属纳米线势能分布的影响   总被引:3,自引:0,他引:3  
采用三维分子动力学模拟方法,以面心立方金属银为研究对象,基于Finnis-Sinclair型嵌入原子法(EAM)多体势,模拟研究了纳米线势能分布特征在常温下及其在不同温度直到熔化过程中的变化,给出了常温及不同温度银纳米线势能分布比例和势能分布函数.结果表明:常温下,纳米线高势能原子比例随纳米线横截面尺寸的减小而增大,势能分布函数曲线各峰位几乎与纳米线横截面尺寸无关;纳米线熔化前的势能分布函数曲线具有多个波峰,随着温度增加,峰数减少且峰位右移;熔化后,多峰特征消失,只有一个宽化的峰.  相似文献   

8.
采用分子动力学模拟计算方法,考察具有较高层错能的Al纳米线沿不同晶向的力学行为和变形机制。在相同计算条件下与具有较低层错能的Ni、Cu、Au和Ag等FCC金属纳米线进行比较。结果表明:在力学行为方面,Al纳米线的弹性模量呈现明显的结构各向异性,满足E[111] > E[110] > E[100]的关系,这一关系在FCC金属纳米线中普遍成立;Al纳米线的屈服应力随晶向呈现σy[100] > σy[111] > σy[110]的关系,这一关系在具有较低层错能的FCC金属纳米线中不具有普遍性,这与体系中位错形成机制密切相关。根据拉伸变形过程微观结构的演变规律,阐明Al纳米线不同晶向的变形机制,并与具有较低层错能的Ni、Cu、Au和Ag等FCC金属纳米线的变形机制进行比较。结果表明,对于尺度较小的高层错能Al纳米线,Schmid因子和广义层错能均难以准确预测其变形机制。  相似文献   

9.
程志达  朱静  孙铁昱 《物理学报》2011,60(3):37504-037504
本文采用第一性原理方法,研究了轴向为低指数晶向的面心立方(fcc)单晶镍纳米线的稳定性和磁性.计算表明,[110] 是fcc镍纳米线最容易出现的取向,[111] 取向次之,而 [001] 取向则很难出现,这一结果与实验事实符合.镍纳米线按照原子位置和磁性强弱的不同,可以分成简单的芯-壳结构,在纳米线芯部,原子的磁矩大小与块体基本一致.在纳米线表面,镍原子的磁矩比芯部原子有所增加.表面原子磁矩与轴向的取向相关,[110] 为轴向的纳米线表面原子磁矩最低,而[001] 为轴向的纳米线表面原子磁矩最高. 关键词: 镍 纳米线 第一性原理 原子磁矩  相似文献   

10.
夏冬  王新强 《物理学报》2012,61(13):130510-130510
基于EAM原子嵌入势, 对临界尺寸下的自由Pt纳米线的奇异结构和熔化行为进行分子动力学模拟. 模拟结果显示, 超细Pt纳米线的熔点随径向尺寸和结构的不同而发生明显改变; 引入林德曼因子, 令其临界值为0.03, 以此得到对应熔点值大小与通过势能-温度变化曲线找出的一致, 又比较了纳米线各层粒子平均林德曼指数的大小, 对各层纳米结构的热稳定性进行定量标度; 综合分析发现螺旋结构纳米线的熔化从内核开始, 而多边形结构的纳米线的熔化从外壳层开始.  相似文献   

11.
The influence of the film thickness and temperature on the phase stability of body-centered cubic (BCC) zirconium in infinite films with different crystallographic orientations has been investigated using the molecular dynamics method with a many-body interatomic interaction potential obtained within the embedded atom model. The calculations have been performed for BCC zirconium films with thicknesses ranging from 2 to 13 nm and with low Miller indices (001), (110), and (111). It has been shown that the BCC(001) zirconium nanofilms with thicknesses up to 6.1 nm, which are formed in the temperature range from 500 to 1300 K, undergo a reorientational phase transition through an intermediate metastable face-centered cubic (FCC) phase with the subsequent transformation into the hexagonal close-packed (HCP) structure (BCC(001)-FCC-BCC??(110)-HCP). When the temperature of initialization of the films is 500 K and below, the BCC-FCC transformation is observed and the FCC phase remains stable. The (110) films are characterized by a strong dependence of the temperature of the BCC-HCP phase transition on the film thickness up to values of 5.8 nm. In the (111) films, the amorphization of the initial BCC phase with the subsequent formation of the BCC phase with a twin structure is observed.  相似文献   

12.
The ferromagnetic resonance and magnetization of single-crystal thin (27–100 Å films grown in the (110) direction are measured in the temperature range 20–400 K. The films are prepared by molecular-beam epitaxy on single-crystal sapphire substrates with a Nb(110)buffer layer. The angular dependence of the parameters of the ferromagnetic resonance spectrum is observed to have a 180° character when the static magnetic field is rotated in the plane of the sample. It is established that this angular dependence can be described on the assumption that the lattice distortions are essentially trigonal. A comparative analysis of previous data for Fe(001) films with the data for Fe(110) films shows that the source of the corrections to the cubic anisotropy constant is the characteristic distribution of the strains along the thickness of the film. Zh. éksp. Teor. Fiz. 115, 689–703 (February 1999)  相似文献   

13.
徐濮  陈乾惕  郭可信 《物理学报》1965,21(5):989-996
对在膜面为(110),(001)和(111)的镍单晶膜上生成的氧化镍取向进行了电子衍射分析,除在(111)和(001)镍膜上肯定了前人已发现的氧化镍与镍的平行取向关系外,还在(110)和(001)镍单晶膜上发现了(111)NiO∥(001)Ni,〈110〉NiO∥〈110〉Ni取向关系以及〈110〉NiO∥〈110〉Ni氧化镍纤维织构。在所有氧化镍与镍的取向关系中均有〈110  相似文献   

14.
谢红献  于涛  方伟  殷福星  Dil Faraz Khan 《中国物理 B》2016,25(12):126201-126201
Using molecular dynamics simulation method, the plastic deformation mechanism of Fe nanowires is studied by applying uniaxial tension along the [110] direction. The simulation result shows that the bcc-to-hcp martensitic phase transformation mechanism controls the plastic deformation of the nanowires at high strain rate or low temperature; however,the plastic deformation mechanism will transform into a dislocation nucleation mechanism at low strain rate and higher temperature. Furthermore, the underlying cause of why the bcc-to-hcp martensitic phase transition mechanism is related to high strain rate and low temperature is also carefully studied. Based on the present study, a strain rate-temperature plastic deformation map for Fe nanowires has been proposed.  相似文献   

15.
The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.  相似文献   

16.
The effect of phonon focusing on the phonon transport in single-crystal nanofilms and nanowires is studied in the boundary scattering regime. The dependences of the thermal conductivity and the free path of phonons on the geometric parameters of nanostructures with various elastic energy anisotropies are analyzed for diffuse phonon scattering by boundaries. It is shown that the anisotropies of thermal conductivity for nanostructures made of cubic crystals with positive (LiF, GaAs, Ge, Si, diamond, YAG) and negative (CaF2, NaCl, YIG) anisotropies of the second-order elastic moduli are qualitatively different for both nanofilms and nanowires. The single-crystal film plane orientations and the heat flow directions that ensure the maximum or minimum thermal conductivity in a film plane are determined for the crystals of both types. The thermal conductivity of nanowires with a square cross section mainly depends on a heat flow direction, and the thermal conductivity of sufficiently wide nanofilms is substantially determined by a film plane orientation.  相似文献   

17.
We report twinning to slip transition with decreasing size and increasing temperature in ultrathin <100> BCC Fe nanowires. Molecular dynamics simulations have been performed on different nanowire size in the range 0.404–3.634 nm at temperatures ranging from 10 to 900 K. The results indicate that slip mode dominates at low sizes and high temperatures, while deformation twinning is promoted at high sizes and low temperatures. The temperature, at which the nanowires show twinning to slip transition, increases with increasing size. The different modes of deformation are also reflected appropriately in the respective stress–strain behaviour of the nanowires.  相似文献   

18.
Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and[1?10] directions.  相似文献   

19.
This study investigates equilibrium-to-nonequilibrium solid phase transitions induced by MeV-scale electron irradiation in B2-CoTi and L12-Co3Ti intermetallic compounds by means of high-voltage electron microscopy. Under MeV-scale electron irradiation, B2-CoTi transforms into a body-centered cubic solid solution through chemical disordering and eventually transforms into an amorphous phase. The critical temperature for amorphisation is found to be 110 K. L12-Co3Ti also exhibits chemical disordering at temperatures below 700 K. However, its amorphisation does not occur even at a low temperature of 20 K. The dominant factor in these solid phase transitions is discussed in terms of the Gibbs free energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号