首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
本文利用第一性原理计算讨论了硫族元素掺杂单层Ag2S的缺陷形成能和电子性质.缺陷形成能反映了在富Ag条件下的掺杂更容易.计算得到的带隙、Mulliken布居和态密度展示出了其相应结构的电子性质.与纯单层的Ag2S相比,Se/Te掺杂Ag2S后的带隙显示出其电导率变化不大.基于Mulliken原子和键布居,研究了硫族元素掺杂后Ag2S中的共价性.此外,通过讨论态密度,分析了能级的移动和电子的贡献.  相似文献   

2.
二维Janus WSSe作为一种新型过渡金属硫族化合物(TMDs)材料由于其独特的面外非对称结构及众多新颖的物理特性,在自旋电子器件中具有巨大的应用潜力.本文基于密度泛函理论的第一性原理平面波赝势方法,通过构建四种掺杂模型W9-xMgxS9Se9(x=0、1、2、3),分别计算了不同浓度Mg掺杂单层WSSe的电子结构和光学性质.结果表明:掺杂使得WSSe由直接带隙半导体变为间接带隙半导体,并且随着掺杂浓度的增加,带隙逐渐减小,费米能级穿过价带,使得掺杂体系变成P型半导体,当x=3时,掺杂体系呈现金属性.此外,掺杂体系的静态介电常数随着掺杂浓度的增加而变大,极化程度显著增强,介电函数虚部和光吸收峰都发生了红移,说明掺杂有利于可见光的吸收.并且,静态折射率随着掺杂浓度的增加而呈现上升趋势,同时消光系数的峰值也与Mg原子的掺杂浓度呈现正相关.  相似文献   

3.
杨振清  白晓慧  邵长金 《物理学报》2015,64(7):77102-077102
本文采用第一性原理中基于密度泛函理论(DFT)的广义梯度近似(GGA)方法, 设计了一种新的(TiO2)12 量子环结构, 研究了它的几何结构、平均结合能及电子云分布等属性. 在此新型结构的基础上, 分别采用过渡金属化合物MoS2, MoSe2, MoTe2, WS2, WSe2和WTe2进行掺杂, 并分析了掺杂后体系的几何结构及电子属性(如平均结合能、能级结构、HOMO-LUMO轨道电子云密度分布和电子态密度等). 计算结果表明: (TiO2)12量子环直径为1.059 nm, 呈中心对称分布, 且所有原子组成一个二维平面结构, 使其几何结构比较稳定, 另外该量子环HOMO-LUMO轨道电子云分布均匀, 且能隙为3.17 eV, 与半导体材料TiO2晶体的能隙的实验值(3.2 eV)非常接近. 掺杂后量子环的能隙均大幅减小, 其中WTe2的掺杂结果能隙最小, 仅为0.61 eV, MoTe2的掺杂结果能隙最大, 为1.16 eV, 也比掺杂前减小约2.0 eV. 其他掺杂结果的能隙都在1 eV左右, 变化不大. 这个能隙的TiO2可以利用大部分的太阳光能, 使TiO2具有更为广泛的应用.  相似文献   

4.
周诗文  彭平  陈文钦  庾名槐  郭惠  袁珍 《物理学报》2019,68(3):37101-037101
采用基于密度泛函理论加U的计算方法,研究了Ce和O空位单(共)掺杂锐钛矿相TiO_2的电子结构和光吸收性质.计算结果表明,Ce和O空位共掺杂TiO_2的带隙中出现了杂质能级,且带隙窄化为2.67 eV,明显比纯TiO_2和Ce,O空位单掺杂TiO_2的要小,因而可提高TiO_2对可见光的响应能力,使TiO_2的光吸收范围增加.光吸收谱显示,掺杂后TiO_2的光吸收边发生了显著红移;在400.0—677.1 nm的可见光区,共掺杂体系的光吸收强度显著高于纯TiO_2和Ce单掺杂TiO_2,而略低于O空位单掺杂TiO_2.此外,Ce掺杂TiO_2中引入O空位后,TiO_2的导带边从-0.27 eV变化为-0.32 eV,这表明TiO_2的导带边的还原能力得到了加强.计算结果为Ce和O空位共掺杂TiO_2在可见光光解水方面的进一步研究提供了有力的理论依据.  相似文献   

5.
邢海英  范广涵  赵德刚  何苗  章勇  周天明 《物理学报》2008,57(10):6513-6519
采用基于密度泛函理论的第一性原理平面波赝势法计算不同Mn浓度掺杂GaN晶体的电子结构和光学性质.计算结果表明Mn掺杂GaN使得Mn 3d与N 2p轨道杂化,产生自旋极化杂质带,材料表现为半金属性,非常适于自旋注入,说明该种材料是实现自旋电子器件的理想材料,折射率在带隙处出现峰值,紫外区光吸收系数随Mn浓度的增加而增大. 关键词: Mn掺杂GaN 第一性原理 电子结构 光学性质  相似文献   

6.
异质结构的构筑与堆垛是新型二维材料物性调控及应用的有效策略.基于密度泛函理论的第一性原理计算,本文研究了4种不同堆叠构型的新型二维Janus Ga2SeTe/In2Se3范德瓦耳斯异质结的电子结构和光学性质. 4种异质结构型均为Ⅱ型能带结构的间接带隙半导体,光致电子的供体和受体材料由二维In2Se3的极化方向决定.光吸收度在可见光区域高达25%,有利于太阳可见光的有效利用.双轴应变可诱导直接-间接带隙转变,外加电场能有效调控异质结构带隙,使AA2叠加构型的带隙从0.195 eV单调增大到0.714 eV,AB2叠加构型的带隙从0.859 eV单调减小到0.058 eV,两种调控作用下异质结的能带始终保持Ⅱ型结构.压缩应变作用下的异质结在波长较短的可见光区域表现出更优异的光吸收能力.这些研究结果揭示了Janus Ga2SeTe/In2Se3范德瓦耳斯异质结电子结构的调控机理,为新型光电器件的设计提供理论指导.  相似文献   

7.
二维材料具有优异的光学、力学、热学、磁学等性质,成为研究的热点之一. SnO2薄膜中的电子迁移率非常高,兼具透明和良好的导电性能,是一种性能绝佳的半导体材料.本文用密度泛函理论框架下的第一性原理研究了二维SnO2及其掺杂体系的电子结构、电子态密度、导电性能及光学性质,计算结果表明:相比较于三维SnO2,二维SnO2的费米能级附近产生很多杂质能级,提高了载流子浓度,带隙明显变窄,电子的局域性增强,导带中电子的有效质量增加了,电子跃迁更容易发生,增加了材料的导电性能;二维SnO2比三维SnO2材料的电极化能力强,在红外区、可见光区、紫外区域的光子吸收性能更优异,光电导率更高,更有利于光生电子-空穴对的分离和迁移,即可以有效地提高其光电转换效率,其中掺杂La元素能更好地提高在红外区、可见光区及紫外区吸收光子的能力,更有利于光电转换的效率,提高导电性.  相似文献   

8.
刘芳  姜振益 《物理学报》2013,62(19):193103-193103
基于密度泛函理论的第一性原理平面波赝势方法, 运用Vasp方法计算了Eu, N掺杂及Eu/N共掺杂锐钛矿TiO2的结构, 并分析了其电子及光学性质. 通过计算发现有一些Eu的4f态电子在Eu掺杂锐钛矿TiO2的体系的费米能级附近出现杂质能级, 并且N掺杂会使得锐钛矿TiO2的禁带宽度减小. 对于共掺杂体系而言, Eu/N共掺杂的协同效应能导致锐钛矿TiO2的晶格畸变及禁带宽度减小. 与此同时, 计算得到的光吸收谱表明Eu/N混合掺杂锐钛矿TiO2展现出了明显的光谱吸收边缘红移. 这些计算结果表明Eu/N共掺杂锐钛矿TiO2具有优良的光催化活性. 关键词: 2')" href="#">TiO2 共掺杂 可见光催化剂 密度泛函理论  相似文献   

9.
通过第一性原理计算探讨了蓝磷烯与过渡金属硫化物MoTe2/WTe2形成范德瓦耳斯异质结的电子结构和光学性质,以及施加双轴应力对相关性质的影响.计算结果表明,形成BlueP/XTe2(X=Mo,W)异质结,二者能带排列为间接带隙type-Ⅱ并有较强的红外光吸收,同时屏蔽特性增强.随压缩应力增加,BlueP/XTe2转变为直接带隙type-Ⅱ能带排列最后转变为金属性;随拉伸应力增加,异质结转变为间接带隙type-Ⅰ能带排列.外加应力也能有效调控异质结的光吸收性质,随压缩应力增加吸收边红移,光吸收响应拓展至中红外光谱区且吸收系数增大;BlueP/MoTe2较BlueP/WTe2在中红外至红外光区间表现出更强的光吸收响应;静态介电常数ε1(0)大幅增加.结果表明,压缩应力对BlueP/MoTe2和BlueP/WTe2能带排列、光吸收特性均有显著的调控作用,其中BlueP/MoTe2对调控更敏感,这些特性也使BlueP/XTe2异质结在窄禁带中红外半导体材料及光电器件具有令人期待的应用价值.  相似文献   

10.
此文用基于密度泛函理论(DFT)的第一性原理计算方法,分别研究了本征、掺Cd、掺Sr的Mg2Ge的能带结构、电子态密度和光学性质.研究结果表明,本征Mg2Ge是一种间接带隙半导体,带隙值为0.228eV.Sr的掺入使其变成带隙为0.591 eV的直接带隙半导体,Cd掺杂Mg2Ge后表现出半金属性质.掺杂后的主要吸收峰减小,吸收谱范围增加.在可见光能量范围内,掺杂的Mg2Ge有更低的反射率,对可见光的利用率增强.此外,掺杂还提高了高能区的光电导率.  相似文献   

11.
基于密度泛函理论框架下的第一性原理计算方法,研究了不同浓度Ag掺杂ZnO体系的电子结构和光学性质。计算结果表明,不同浓度Ag原子代替Zn原子后会导致电子结构和光学性质有显著的改变,能带随掺杂浓度的增大带隙渐渐变窄,光吸收、反射等也随银掺杂浓度的增大先是向高能端偏移再向低能端移动。这暗示Ag掺杂ZnO对其电子结构及光学性质有很大的影响,为进一步研究掺杂对ZnO性质的影响提供理论基础。  相似文献   

12.
采用基于密度泛函理论(density functional theory,DFT)的Castep(MS 5.5)软件包进行计算,计算方法为广义梯度近似(generalized gradient approximation,GGA)下的Predew-Burke-Ernzerhof交换关联泛函和投影缀加平面波方法,构建2×2×1锐钛矿相二氧化钛单掺杂Ni、V、Zr、W等金属原子及N、P、S等非金属原子的晶胞模型,对掺杂锐钛矿相二氧化钛的能带结构、态密度和吸收光谱进行了计算.计算结果表明:Ni、V、Zr、W、P、N、S单掺杂二氧化钛的带隙宽度,除了W元素,其它掺杂元素都使带隙变窄,吸收光谱发生一定程度的红移.同时计算结果也表明,在金属和非金属共掺杂的作用下,由于共掺杂元素的引入,均使得带隙降低,其中P-V和S-Ni共掺杂的带隙最小,光学性质显示S-Ni共掺杂吸收边带最宽,对可见光的利用率最高,理论上S-Ni共掺杂锐钛矿二氧化钛具有良好的光致阴极保护效果.  相似文献   

13.
本文利用基于密度泛函理论的第一性原理研究了不同浓度的Mo掺杂BiVO4的V位的电子结构、光学性质和光催化性能.缺陷形成能的计算结果说明BiMoxV1-xO4(x=0.0625, 0.125, 0.25)三种掺杂体系都是可以稳定存在的.电子结构计算结果表明:BiMoxV1-xO4(x=0, 0.0625, 0.125, 0.25)四种体系的带隙分别为2.123 eV,2.142 eV,2.160 eV和2.213 eV.掺杂BiVO4体系的带隙值均大于本征BiVO4,且带隙随着Mo浓度的增加而增大. BiMoxV1-xO4(x=0.0625, 0.125, 0.25)三种掺杂体系的能带结构全部向低能量区域移动,导致掺杂体系导带底越过费米能级,Mo掺杂BiVO4后具...  相似文献   

14.
任超  李秀燕  落全伟  刘瑞萍  杨致  徐利春 《物理学报》2017,66(15):157101-157101
基于密度泛函的第一性原理研究了Ag空位、O空位和Ag-O双空位对β-AgVO_3的电子结构及光学性质的影响.采用广义梯度近似平面波超软赝势GGA+U方法,对不同缺陷体系的形成能、能带结构、电子态密度、差分电荷密度和吸收光谱进行了计算和分析.通过比较不同Ag空位和O空位的形成能,确定了β-AgVO_3中主要形成Ag3空位和O1空位,并且Ag空位较O空位更容易形成.Ag3空位和O1空位的存在都使得β-AgVO_3带隙有一定程度的减小;Ag3空位使β-AgVO_3呈现p-型半导体性质,而O1空位和Ag3-O1双空位使β-AgVO_3呈现n-型半导体性质.Ag3和O1空位对晶体在可见光范围内的光吸收影响较小.  相似文献   

15.
The structural, energetic, and electronic properties of lattice highly mismatched ZnY1-xOx (Y = S, Se, Te) ternary alloys with dilute O concentrations are calculated from first principles within the density functional theory. We demonstrate the formation of an isolated intermediate electronic band structure through diluted O-substitute in zinc-blende ZnY (Y = S, Se, Te) at octahedral sites in a semiconductor by the calculations of density of states (DOS), leading to a significant absorption below the band gap of the parent semiconductor and an enhancement of the optical absorption in the whole energy range of the solar spectrum. It is found that the intermediate band states should be described as a result of the coupling between impurity O 2p states with the conduction band states. Moreover, the intermediate bands (IBs) in ZnTeO show high stabilization with the change of O concentration resulting from the largest electronegativity difference between O and Te compared with in the other ZnSO and ZnSeO.  相似文献   

16.
采用基于密度泛函理论下的MS软件模拟了过渡金属Ni掺杂ZnV2O4前后的能带结构、态密度以及光学性质.结果表明:ZnV2O4具有间接的光学跃迁且能带间隙为0.355 eV,Ni掺杂后能带间隙增加为0.785 eV,且带隙类型不变,引入的Ni-3d轨道电子对ZnV2O4的价带和导带组成提供了较大贡献.光学性质结果表明ZnV2O4为一种低介电材料,在可见光区的吸收系数和折射率较低,主要表现为紫外吸收.掺杂Ni后,在可见光区的吸收特性和光电导率均增大,有效改善了ZnV2O4在可见光区的光电性能.  相似文献   

17.
本文利用基于密度泛函理论(DFT)的第一性原理计算研究了它们的电子结构和光学性质.光学性质的计算结果和实验相一致.结果表明,Fe或Ag掺杂后,K2Ti6O13的带隙中出现了杂质带且其带隙值变小,因而使掺杂后的K2Ti6O13的吸收边发生红移并实现了其对可见光吸收.其中杂质带主要由Fe 3d态或Ag 4d态与Ti 3d态和O 2p态杂化而成.对于Fe掺杂的K2Ti6O13,杂质带位于带隙中间,因此可以作为电子从价带跃迁到导带的桥梁.对于Ag掺杂的K2Ti6O13,杂质带位于价带顶附近为受主能级,可以降低光生载流子的复合概率.实验和计算研究表明,通过Fe或Ag的掺杂可以实现了K2Ti6O13对可见光的吸收,这对进一步研究K2Ti6O13的光学性质具有重要意义.  相似文献   

18.
采用高温熔融法制备了Eu-Ag共掺的硼酸盐玻璃,利用吸收光谱和发射光谱等研究了玻璃中网络形成体B2O3含量变化和Eu离子共掺对于Ag在基质中赋存状态的影响。在Eu-Ag共掺玻璃的吸收光谱中发现,随着B2O3含量的增加,Ag纳米颗粒在4 10 nm附近的宽带吸收强度逐渐下降;玻璃在340 nm光源激发下,位于350~600 nm的蓝绿光区出现一个Ag分子团簇的宽带发光,且其发光强度随B2O3含量的增加逐渐增强。在Eu或Ag单掺的玻璃中可分别观测到微弱的Eu3+或Ag分子团簇的本征发射,而Eu-Ag共掺样品中Eu3+和Ag分子团簇的发光都得到了显著的增强。并且Eu离子浓度的增加促进了Ag纳米颗粒在410 nm附近的宽带吸收。对Eu离子的添加促进Ag纳米颗粒析出的机理进行了讨论。同时,由于Eu3+的5D0→7FJ的电子跃迁发射为橙红光,Ag纳米团簇可发射蓝绿光甚至黄光,因此通过玻璃结构的调控和Eu离子掺杂浓度的调节可以实现玻璃的白光发射,这有望成为潜在的白光LED用玻璃照明材料。  相似文献   

19.
王顺  杜宇雷  廖文和 《中国物理 B》2017,26(1):17806-017806
Using the density functional theory, we have investigated the electronic and optical properties of two-dimensional Sc_2C monolayer with OH, F, or O chemical groups. The electronic structures reveal that the functionalized Sc_2C monolayers are semiconductors with a band gap of 0.44–1.55 eV. The band gap dependent optical parameters, like dielectric function, absorption coefficients, reflectivity, loss function, and refraction index were also calculated for photon energy up to 20 eV. At the low-energy region, each optical parameter shifts to red, and the peak increases obviously with the increase of the energy gap. Consequently, Sc_2C monolayer with a tunable band gap by changing the type of surface chemical groups is a promising 2D material for optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号