共查询到16条相似文献,搜索用时 93 毫秒
1.
2.
3.
采用分子动力学方法模拟液体在纳米结构表面的快速沸腾过程.主要研究了纳米结构表面粗糙度以及栏栅形和棋盘形两种排列方式对液体快速沸腾过程以及换热特性的影响.研究结果表明,随着纳米结构表面粗糙度的增加,栏栅形和棋盘形纳米结构表面液体沸腾起始时间均提前.当栏栅形和棋盘形纳米结构表面粗糙度相同时,棋盘形纳米结构表面会进一步缩短液体沸腾起始时间.形成这种现象的原因是纳米结构表面粗糙度的增加,增加了固液接触面积,提高了初始时刻热通量,减小了固液界面热阻,导致表面附近液体动能增大,增大了液体高度方向的温度梯度,有利于液体发生沸腾.当纳米结构表面粗糙度相同时,棋盘形纳米结构表面具有较小的界面热阻,从而缩短了沸腾所需要的时间. 相似文献
4.
5.
采用分子动力学方法, 模拟了由脂肪酸CnH2n+1COOH}和C17H31COOH (n=12,13,14,15,16,17)组成的混合单层Langmuir-Blodgett(LB)膜间的摩擦特性, 探究了膜结构的变化对超薄膜的摩擦的影响. 结果显示. 在滑动过程中, 随着n的增加, 膜内分子的运动受到邻近分子的约束逐渐增加, 膜结构的稳定性也逐渐增加, 其剪切压逐渐减小, n=17时的剪切压最小. 在两单层膜之间无氢键形成; 而混合膜内的分子之间形成的氢键是单层膜结构稳定的主要因素, 其中n=16时形成的氢键最稳定, 但全部由相同C17H31COOH分子组成的单层膜的滑动效果最好. 分子的弯曲形变能对剪切压影响非常小. 相似文献
6.
8.
纳米增强剂通常被用来提升相变材料的导热性能,但这种方式通常伴随着复合后材料相变焓的降低.虽然这种降低难以避免,但其微观机理乃至影响规律却始终未能明晰.为深入探究纳米复合相变材料相变焓降低的机理,本文以熔融硝酸钠(太阳盐的重要组成成分)为相变材料,制备了石墨烯纳米片质量分数为0%,0.5%, 1%, 1.5%, 2%的复合相变材料.通过实验测量与分子动力学模拟的方法深入分析了石墨烯纳米片的掺杂导致熔融硝酸钠产生团簇以及复合材料熔点和相变焓非依数性降低的影响机理.结果表明,石墨烯纳米片质量分数为1.5%时,硝酸钠致密层和石墨烯纳米片间的质心等效距离最接近他们相互作用势的势阱位置,此时二者之间相互吸引作用最强,熔盐分子的运动受限最为严重,难以发生熔化,从而导致相变焓降低最为显著.为了最大限度地避免纳米复合相变材料相变焓的损失,应根据相变材料与纳米增强剂的类型及其相互作用类型,合理选择纳米增强剂的质量分数.在实际应用中,恰当的质量分数还将在一定程度上降低复合相变材料的制备成本. 相似文献
9.
10.
根据实验所得沸腾曲线,对纳米颗粒悬浮液进行稳态数值模拟,计算了不同过热度下活化核心的密度.计算结果表明一对于不同浓度的纳米颗粒悬浮液,在考虑了其物性变化对沸腾传热的影响外,颗粒的加入对活化核心密度产生的影响是主要的因素,并且影响效果随颗粒浓度的变化不呈单向趋势. 相似文献
11.
12.
Effective heat dissipation from nano-fluidic devices is sometimes necessary to ensure their performance and lifespan. In the molecular dynamics simulation of nanoscale convective heat transfer, thermostats cannot be directly applied to the fluid because of the non-uniform temperature distribution. Periodic boundary is typically utilised, but unrealistic axial heat conduction exists when there is a temperature difference between the outlet and images of inlet atoms. In this paper, the effect of axial conduction caused by periodic boundary is investigated through the Péclet number (Pe). Taking viscous dissipation into consideration, the magnitude of outlet thermal diffusion is observed to decrease with increasing Pe. The local average temperature of fluid changes in an exponential form except in the region close to the outlet. Results show that the contribution of outlet axial conduction to the local average temperature is less than 2.0% when Pe > 10. The main reason is that the magnitude of fluid velocity and viscous heat dissipation in nanochannels is much larger than that in macro-channels at the same Péclet number. 相似文献
13.
采用由SRK方程计算得出的混合工质物性参数,将具有相变两相流体物性分三部分处理,得出混合工质分段物性数据拟合曲线,并输入FLUENT软件的材料物性数据文件中,作为数值模拟物性参数数据。在上述物性数据处理的基础上,对混合工质天然气液化装置中换热器采用分段方式进行稳态数值模拟研究,得到沿长度方向一定温度下传热系数、压力梯度的变化曲线。通过与MUSE软件数据比较,计算结果有一定合理性,所得结论为有相变换热的混合工质低温板翅式换热器的设计和优化提供一定参考。 相似文献
14.
In this paper, it was investigated experimentally that the effect of different kinds of working fluid on the thermal performance of evaporator with capillary wick consisted by multilayered sintered copper mesh under different electric field strengths at the operating pressure of 1.01 × 105 Pa R141b and R123 were used as the working fluids. The electric field strength in this study was in the range of 0kV/m–1600 kV/m, respectively. The experimental results showed that the applied electric field strength has significant effect on heat transfer characteristic. The heat transfer enhancement effects increased with the increase of the electric field. Under the applied electric field strength, the maximum heat transfer enhancement factors could reach as high as 1.5 and 1.32 for the two kinds of working fluids in the experiment. 相似文献
15.
实验研究了环保替代制冷工质R410A和R22在冷凝温度40C时在内螺纹强化管(外径为9.52mm)内的冷凝换热特性,对二者的冷凝换热性能进行了对比,并研究了测试管外冷却水流量对换热系数的影响.结果表明:在管外冷却水流量相同时,R22的总换热系数K普遍比R410a小,而管内传热系数h,比R410A大.R22与R410A的总传热系数K均随管外冷却水流量的增加而增加,当制冷剂流量Gm大于300kg.s-1.m-2时,管外冷却水流量对总传热系数K的影响变小. 相似文献
16.
Shafqat Hussain Hakan F. Öztop Khalid Mehmood Nidal Abu-Hamdeh 《Chinese Journal of Physics (Taipei)》2018,56(2):484-501
A computational analysis has been performed on mixed convection in a double sided lid-driven cavity in the presence of volumetric heat generation or absorption. Effects of inclined magnetic field are also studied. The governing parameters are solved via Galerkin weighted residual finite element method in space and the Crank–Nicolson in time. Governing parameters are nanoparticle volume fraction (0.0?≤???≤?0.04), Richardson number (0.01?≤?Ri?≤?10), internal heat generation or absorption parameter inclination angle of magnetic field (0°?≤?γ?≤?90°) and Hartmann number (0?≤?Ha?≤?100). It is observed that the highest heat transfer is obtained in case of the maximum value of heat absorption. As a further finding, heat transfer decreases with increasing of Hartmann number and increases with increasing of nanoparticle volume fraction. 相似文献