首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A designed pressure–volume–temperature (PVT) apparatus has been used to measure the (vapor + liquid) equilibrium properties of three binary mixtures (methane +, ethane +, and carbon dioxide + 1-butanol) at two temperatures (303 and 323) K and at the pressures up to 6 MPa. The solubility of the compressed gases in 1-butanol and the saturated liquid densities and viscosities were measured. In addition, the density and viscosity of pure 1-butanol were measured at two temperatures (303 and 323) K and at the pressures up to 10 MPa. The experimental results show that the solubility of the gases in 1-butanol increases with pressure and decreases with temperature. The dissolution of gases in 1-butanol causes a decline in the viscosity of liquid phase. The saturated liquid density follows a decreasing trend with the solubility of methane and ethane. However, the dissolution of carbon dioxide in 1-butanol leads to an increase in the density of liquid phase. The experimental data are well correlated with Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state (EOSs). SRK EOS was slightly superior for correlating the saturated liquid densities.  相似文献   

2.
To fulfil the increasing demand for faster and more complex separations, modern HPLC separations are performed at ever higher pressures and temperatures. Under these operating conditions, it is no longer possible to safely assume the mobile phase fluid properties to be invariable of the governing pressures and temperatures, without this resulting in significantly deficient results. A detailed insight in the influence of pressure and temperature on the physico-chemical properties of the most commonly used liquid mobile phases: water-methanol and water-acetonitrile mixtures, therefore becomes very timely. Viscosity, isothermal compressibility and density were measured for pressures up to 1000 bar and temperatures up to 100 degrees C for the entire range of water-methanol and water-acetonitrile mixtures. The paper reports on two different viscosity values: apparent and real viscosities. The apparent viscosities represent the apparent flow resistance under high pressure referred to by the flow rates measured at atmospheric pressure. They are of great practical use, because the flow rates at atmospheric pressure are commonly stable and more easily measurable in a chromatographic setup. The real viscosities are those complying with the physical definition of viscosity and they are important from a fundamental point of view. By measuring the isothermal compressibility, the actual volumetric flow rates at elevated pressures and temperatures can be calculated. The viscosities corresponding to these flow rates are the real viscosities of the solvent under the given elevated pressure and temperature. The measurements agree very well with existing literature data, which mainly focus on pure water, methanol and acetonitrile and are only available for a limited range of temperatures and pressures. As a consequence, the physico-chemical properties reported on in this paper provide a significant extension to the range of data available, hereby providing useful data to practical as well as theoretical chromatographers investigating the limits of modern day HPLC.  相似文献   

3.
Densities, vapor pressures, and the critical point were measured for dimethyl ether, thus, filling several gaps in the thermodynamic data for this compound. Densities were measured with a computer-controlled high temperature, high-pressure vibrating-tube densimeter system in the sub- and supercritical states. The densities were measured at temperatures from 273 to 523 K and pressures up to 40 MPa (417 data points), for which densities between 62 and 745 kg/m3 were covered. The uncertainty (where the uncertainties can be considered as estimates of a combined expanded uncertainty with a coverage factor of 2) in density measurement was estimated to be no greater than 0.1% in the liquid and compressed supercritical states. Near the critical temperature and pressure, the uncertainty increases to 1%. Using a variable volume apparatus with a sapphire tube, vapor pressures and critical data were determined. Vapor pressures were measured between 264 and 194 kPa up to near the critical point with an uncertainty of 0.1 kPa. The critical point was determined visually with an uncertainty of 1% for the critical volume, 0.1 K for the critical temperature, and 5 kPa for the critical pressure. The new vapor pressures and compressed liquid densities were correlated with the simple TRIDEN model. The new data along with the available literature data were used to develop a first fundamental Helmholtz energy equation of state for dimethyl ether, valid from 131.65 to 525 K and for pressures up to 40 MPa. The uncertainty in the equation of state for density ranges from 0.1% in the liquid to 1% near the critical point. The uncertainty in calculated heat capacities is 2%, and the uncertainty in vapor pressure is 0.25% at temperatures above 200 K. Although the equation presented here is an interim equation, it represents the best currently available.  相似文献   

4.
The adsorption of pure methane and ethane in BPL activated carbon has been measured at temperatures between 264 and 373 K and at pressures up to 3.3 MPa with a bench-scale high-pressure open-flow apparatus. The same apparatus was used to measure the adsorption of binary methane/ethane mixtures in BPL at 301.4 K and at pressures up to 2.6 MPa. Thermodynamic consistency tests demonstrate that the data are thermodynamically consistent. In contrast to two sets of data previously published, we found that the adsorption of binary methane/ethane in BPL behaves ideally (in the sense of obeying ideal adsorbed solution theory, IAST) throughout the pressure and gas-phase composition range studied. A Tian-Calvet type microcalorimeter was used to measure low-pressure isotherms, the isosteric heats of adsorption of pure methane and ethane in BPL activated carbon, and the individual heats of adsorption in binary mixtures, at 297 K and at pressures up to 100 kPa. The mixture heats of adsorption were consistent with IAST.  相似文献   

5.
6.
The influence of total pressure and kind of carrier gas on homogeneous nucleation rates of 1-pentanol was investigated using experimental method of laminar flow diffusion chamber in this study. Two different carrier gases (helium and argon) were used in the total pressure range from 50 to 400 kPa. Nucleation temperatures ranged from 265 to 290 K for 1-pentanol-helium and from 265 to 285 K for 1-pentanol-argon. Nucleation rates varied between 10(1) and 10(6) cm(-3) s(-1) for 1-pentanol-helium and between 10(2) and 10(5) cm(-3) s(-1) for 1-pentanol-argon. Both positive and slight negative pressure effects were observed depending on temperature and carrier gas. The trend of pressure effect was found similar for both carrier gases. Error analysis on thermodynamic properties was conducted, and the lowering of surface tension due to adsorption of argon on nucleated droplets was estimated. A quantitative overview of pressure effect is provided.  相似文献   

7.
氯仿,乙醇,苯有关二元体系加压相平衡研究   总被引:1,自引:1,他引:1  
氯仿、乙醇、苯有关二元体系加压相平衡研究马忠明,陈庚华,王琦,严新焕,韩世钧,余淑娴(浙江大学化学系,杭州,310027)(江西大学化学系)关键词加压汽液平衡,醇烃体系,氯仿,乙醇,苯醇是极性分子,烃是非极性或弱极性分子,醇与醇、烃与烃分子及醇与烃分...  相似文献   

8.
The properties of liquid methane, liquid neon, and gas helium are calculated at low temperatures over a large range of pressure from the classical molecular-dynamics simulations. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The equations of state, diffusion, and shear viscosity coefficients are determined for neon at 45 K, helium at 80 K, and methane at 110 K. A comparison is made with the existing experimental data and for thermodynamical quantities, with results computed from quantum numerical simulations when they are available. The theoretical variation of the viscosity coefficient with pressure is in good agreement with the experimental data when the quantum corrections are taken into account, thus reducing considerably the 60% discrepancy between the simulations and experiments in the absence of these corrections.  相似文献   

9.
Adsorption data of the pure gases ethane, methane and their mixtures on zeolite 13X and the pure gases carbon dioxide, nitrogen and their mixtures on activated carbon Norit R1 were measured gravimetrically at a temperature of 298 K and pressures up to 15 MPa. From the total loads the partial loads were calculated by the modified van Ness approach. The calculated loads show a good agreement with the experimental data.  相似文献   

10.
The kinetics of the catalytic reforming reaction of methane with carbon dioxide to produce synthesis gas on a Ni/(α-A1203 and a HSD-2 type commercial catalyst has been studied. The results indicate that the reaction orders are one and zero for methane and carbon dioxide, respectively, when the carbon dioxide partial pressure was about 12.5-30.0 kPa and the temperature was at 1123-1173 K. However, when the carbon dioxide partial pressure was changed to 30.0-45.0 kPa under the same temperature range of 1123-1173 K, the reaction orders of methane and carbon dioxide are one. Furthermore, average rate constants at different temperatures were determined.  相似文献   

11.
Adsorption isotherms of H2S, CO2, and CH4 on the Si-CHA zeolite were measured over pressure range of 0–190 kPa and temperatures of 298, 323, and 348 K. Acid gases adsorption isotherms on this type of zeolite are reported for the first time. The isotherms follow a typical Type-I shape according to the Brunauer classification. Both Langmuir and Toth isotherms describe well the adsorption isotherms of methane and acid gases over the experimental conditions tested. At room temperature and pressure of 100 kPa, the amount of CO2 adsorption for Si-CHA zeolite is 29 % greater than that reported elsewhere (van den Bergh et al. J Mem Sci 316:35–45 (2008); Surf Sci Catal 170:1021–1027 (2007)) for the pure silica DD3R zeolite while the amounts of CH4 adsorption are reasonably the same. Si-CHA zeolite showed high ideal selectivities for acid gases over methane at 100 kPa (6.15 for H2S and 4.06 for CO2 at 298 K). Furthermore, H2S adsorption mechanism was found to be physical, and hence, Si-CHA can be utilized in pressure swing adsorption processes. Due to higher amount of carbon dioxide adsorbed and lower heats of adsorption as well as three dimensional channels of Si-CHA pore structure, this zeolite can remove acid gases from methane in a kinetic based process such as zeolite membrane.  相似文献   

12.
Infrared spectra of fluorinated alcohols in nonpolar solvents were discussed in dependence on high pressures and low temperatures. The frequency of the monomeric OH stretching vibration, measured for the temperature at 20°C and for the pressure at 100 kPa, is about 20 cm−1 lower than in the gas phase. The frequency decreases with increasing pressure up to 2 GPa. The frequency shift turns round for a further pressure increase. For higher than 8 GPa pressures the frequency is blue shifted in comparison to the gaseous state. The OH frequency decreases for a temperature change from 400 K up to 100 K. The frequency shift turns round for lower temperatures. This finding will be explained by a superposition of the unperturbed OH potential with Lennard-Jones function for different distances.  相似文献   

13.
A new experimental technique has been developed to measure the mole fraction of the gas hydrate former in the bulk liquid phase, at the onset of hydrate growth and thereafter, in a semi-batch stirred tank reactor. The mole fraction of carbon dioxide and methane in the bulk liquid phase was obtained for the first 11 and 13 min of the growth stage, for the carbon dioxide–water and methane–water systems respectively. Experiments were conducted at temperatures ranging from 275.3 K to 281.4 K and at pressures ranging from 2017 kPa to 4000 kPa for the carbon dioxide–water system, while temperatures ranging from 275.1 K to 279.1 K and pressures ranging from 3858 kPa to 6992 kPa were investigated for the methane–water system. The mole fraction of carbon dioxide in the bulk liquid phase was found to be constant during the growth period, varying on average by 0.6% and 0.3% at 275.4 K and 279.5 K. Similarly, the mole fraction of methane in the bulk liquid phase was found to remain constant during the growth stage, varying on average by 2.0%, 0.8% and 0.2% at 275.1 K, 277.1 K and 279.1 K respectively. The mole fraction of the gas hydrate former in the bulk liquid phase was also found to increase with pressure and decrease with temperature, while remaining greater than its hydrate-liquid water equilibrium value. As a result, an alternate formulation of a hydrate growth model is proposed.  相似文献   

14.
Equilibrium adsorption of nitrogen, carbon dioxide, and argon was examined on the sodium and pyridinium forms of montmorillonite and on the hydrogen form of bentonite. The measurements were carried out at 303, 343, 373, and 400 K over pressure ranges of 0.1–90 MPa (Ar and N2) and 0.1–6 MPa (CO2). The amount of nitrogen vapor adsorbed was determined at 77 K and pressures from 0 to 0.1 MPa. The porous structure parameters of the studied samples were determined using adsorption isotherms of nitrogen, argon, and carbon dioxide vapors. At elevated temperatures and pressures >10 MPa, Ar and N2 adsorption processes on the Na-form of montmorillonite and Ar adsorption on bentonite are activated, since the amounts of the gases adsorbed and adsorption volumes increase with temperature. No activated adsorption is observed for carbon dioxide adsorption on these adsorbents. A comparison of the excess adsorption isotherms of gases on the Py-form of montmorillonite and H-form of bentonite shows that adsorption in micropores predominates for the Py-form of montmorillonite, whereas for the Na-form of bentonite and H-form of bentonite adsorption occurs mainly in meso- and macropores.  相似文献   

15.
The dissociative adsorption of methane on the Pt(111) surface has been investigated and characterized over the 1-10 Torr pressure and 300-500 K temperature ranges using sum frequency generation (SFG) vibrational spectroscopy and Auger electron spectroscopy (AES). At a reaction temperature of 300 K and a pressure of 1 Torr, C-H bond dissociation occurs in methane on the Pt(111) surface to produce adsorbed methyl (CH(3)) groups, carbon, and hydrogen. SFG results suggest that C-C coupling occurs at higher reaction temperatures and pressures. At 400 K, methyl groups react with adsorbed C to form ethylidyne (C(2)H(3)), which dehydrogenates at 500 K to form ethynyl (C(2)H) and methylidyne (CH) species, as shown by SFG. By 600 K, all of the ethylidyne has reacted to form the dissociation products ethynyl and methylidyne. Calculated C-H bond dissociation probabilities for methane, determined by carbon deposition measured by AES, are in the 10(-8) range and increase with increasing reaction temperature. A mechanism has been developed and is compared with conclusions from other experimental and theoretical studies using single crystals.  相似文献   

16.
Permeation of various gases (carbon dioxide, nitrous oxide, methane, nitrogen, oxygen, argon, krypton, neon) and their equimolar mixtures through DD3R membranes have been investigated over a temperature range of 220–373 K and a feed pressure of 101–400 kPa. Helium was used as sweep gas at atmospheric pressure. Adsorption isotherms were determined in the temperature range 195–298 K, and modelled by a single and dual site Langmuir model. The permeation flux is determined by the size of the molecule relative to the window opening of DD3R, and its adsorption behaviour. As a function of temperature, bulky molecules (methane) show activated permeation, weakly adsorbing molecules decreasing permeation behaviour and strongly adsorbing molecules pass through a maximum. Counter diffusion of the sweep gas (helium) ranged from almost zero up to the order of the feed gas permeation and was strongly influenced by the adsorption of the feed gas.

DD3R membranes have excellent separation performance for carbon dioxide/methane mixtures (selectivity 100–3000), exhibit good selectivity for nitrogen/methane (20–45), carbon dioxide and nitrous oxide/air (20–400), and air/krypton (5–10) and only a modest selectivity for oxygen/nitrogen (2) separation. The selectivity of mixtures of a strongly and a weakly adsorbing component decreased with increasing temperature and pressure. The selectivity of mixtures of weakly adsorbing components was independent of pressure.

The permeation and separation characteristics of light gases through DD3R membranes can be explained by taking into account: (1) steric effects introduced by the window opening of DD3R leading to molecular sieving and activated transport, (2) competitive adsorption effects, as observed for mixtures involving strongly adsorbing gases, and (3) interaction between diffusing molecules in the cages of the zeolite.  相似文献   


17.
Homogeneous nucleation rate isotherms of n-butanol+helium were measured in a laminar flow diffusion chamber at total pressures ranging from 50 to 210 kPa to investigate the effect of carrier gas pressure on nucleation. Nucleation temperatures ranged from 265 to 280 K and the measured nucleation rates were between 10(2) and 10(6) cm(-3) s(-1). The measured nucleation rates decreased as a function of increasing pressure. The pressure effect was strongest at pressures below 100 kPa. This negative carrier gas effect was also temperature dependent. At nucleation temperature of 280 K and at the same saturation ratio, the maximum deviation between nucleation rates measured at 50 and 210 kPa was about three orders of magnitude. At nucleation temperature of 265 K, the effect was negligible. Qualitatively the results resemble those measured in a thermal diffusion cloud chamber. Also the slopes of the isothermal nucleation rates as a function of saturation ratio were different as a function of total pressure, 50 kPa isotherms yielded the steepest slopes, and 210 kPa isotherms the shallowest slopes. Several sources of inaccuracies were considered in the interpretation of the results: uncertainties in the transport properties, nonideal behavior of the vapor-carrier gas mixture, and shortcomings of the used mathematical model. Operation characteristics of the laminar flow diffusion chamber at both under-and over-pressure were determined to verify a correct and stable operation of the device. We conclude that a negative carrier gas pressure effect is seen in the laminar flow diffusion chamber and it cannot be totally explained with the aforementioned reasons.  相似文献   

18.
Summary: In current work time-resolved optical spectroscopy (TROS) has been used to study coil-globule transitions monitored by the local segmental dynamics of anthracene labeled poly (N-isopropymethacrylamide), PNIPMAM as a function of pressure (0.1 MPa–200 MPa) over a temperature range of 283 K to 333 K. The positions of temperature-induced transition were observed to be independent on molecular weight of polymer at low pressures. The positions of pressure-induced transition were observed to be dependent on molecular weight of polymer at temperatures below LCST at atmospheric pressure. Double globule-coil-globule transition was observed to occur with pressure increasing at temperatures nearly above LCST. All these results along with values of intrinsic viscosity evaluated from values of correlation times measured for globules formed at different pressure/temperature conditions suggest the different mechanisms of compactisation governed by pressure and temperature and, correspondently, the different types of final structures. At low pressures with temperature increasing the compact, well-packed globules are forming via initial interactions between neighboring parts of polymer chain and further collapse. Relatively loosened particles are forming with pressurizing at low temperatures. Interaction between remote along the chain units takes part from the first stage of globule formation. And finally, rather solvated and irregularly twisted particles are forming at high pressure and high temperatures, i.e. at conditions, when both processes are involved.  相似文献   

19.
燃料馏分油气-液相平衡常数的测定与关联   总被引:4,自引:1,他引:4  
实沸点蒸馏原油获得燃料馏分油。采用拟静态法测定不同沸程的22种燃料馏分油在系列温度下的泡点蒸气压,用Antoine方程关联蒸气压与温度的关系。在泡点压力分别为10 kPa、30 kPa、50 kPa、80 kPa和101.325 kPa时,按虚拟组分处理法计算了燃料宽馏分油中各虚拟组分的气-液相平衡常数,关联了气-液相平衡常数与虚拟组分的沸点以及相平衡温度、压力的关系,得到的表达式可以计算常压沸点范围在348.15 K至623.15 K间燃料宽馏分油的气-液相平衡常数,经180个数据点回归检验,平均误差为4.5%。  相似文献   

20.
Viscosity of six (0.10, 0.33, 0.65, 0.97, 1.40, and 2.00) mol kg−1 binary aqueous CaCl2 solutions has been measured with a capillary-flow technique. Measurements were made at pressures up to 60 MPa. The range of temperature was from 293 to 575 K. The total uncertainty of viscosity, pressure, temperature, and composition measurements was estimated to be less than 1.6%, 0.05%, 15 mK, and 0.014%, respectively. The effect of temperature, pressure, and concentration on viscosity of binary aqueous CaCl2 solutions was studied. The measured values of viscosity of CaCl2(aq) were compared with data, predictions, and correlations reported in the literature. The temperature and pressure coefficients of viscosity of CaCl2(aq) were studied as a function of concentration and temperature. The viscosity data have been interpreted in terms of the extended Jones–Dole equation for the relative viscosity (η/η0) to accurate calculate the values of viscosity A- and B-coefficients as a function of temperature. The derived values of the viscosity B-coefficients were compared with the values calculated from the ionic B-coefficient data. The physical meaning parameters V and E in the absolute rate theory of viscosity and hydrodynamic molar volume (effective rigid molar volume of salt) Vk were calculated using present experimental viscosity data. TTG model has been used to compare predicted values of the viscosity of CaCl2(aq) solutions with experimental values at high pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号