首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.

We introduce three new constraint qualifications for nonlinear second order cone programming problems that we call constant rank constraint qualification, relaxed constant rank constraint qualification and constant rank of the subspace component condition. Our development is inspired by the corresponding constraint qualifications for nonlinear programming problems. We provide proofs and examples that show the relations of the three new constraint qualifications with other known constraint qualifications. In particular, the new constraint qualifications neither imply nor are implied by Robinson’s constraint qualification, but they are stronger than Abadie’s constraint qualification. First order necessary optimality conditions are shown to hold under the three new constraint qualifications, whereas the second order necessary conditions hold for two of them, the constant rank constraint qualification and the relaxed constant rank constraint qualification.

  相似文献   

3.
Three constraint qualifications (the weak generalized Robinson constraint qualification, the bounded constraint qualification, and the generalized Abadie constraint qualification), which are weaker than the generalized Robinson constraint qualification (GRCQ) given by Yen (1997) [1], are introduced for constrained Lipschitz optimization problems. Relationships between those constraint qualifications and the calmness of the solution mapping are investigated. It is demonstrated that the weak generalized Robinson constraint qualification and the bounded constraint qualification are easily verifiable sufficient conditions for the calmness of the solution mapping, whereas the proposed generalized Abadie constraint qualification, described in terms of graphical derivatives in variational analysis, is weaker than the calmness of the solution mapping. Finally, those constraint qualifications are written for a mathematical program with complementarity constraints (MPCC), and new constraint qualifications ensuring the C-stationary point condition of a MPCC are obtained.  相似文献   

4.
In this paper, we are concerned with a nonsmooth multiobjective optimization problem with inequality constraints. We introduce a second-order constraint qualification, which is a generalization of the Abadie constraint qualification and derive second-order Kuhn-Tucker type necessary conditions for efficiency under the constraint qualification. Moreover, we give some conditions which ensure the constraint qualification holds.  相似文献   

5.
《Optimization》2012,61(6):1245-1260
ABSTRACT

In this paper, we derive some optimality and stationarity conditions for a multiobjective problem with equilibrium constraints (MOPEC). In particular, under a generalized Guignard constraint qualification, we show that any locally Pareto optimal solution of MOPEC must satisfy the strong Pareto Kuhn-Tucker optimality conditions. We also prove that the generalized Guignard constraint qualification is the weakest constraint qualification for the strong Pareto Kuhn-Tucker optimality. Furthermore, under certain convexity or generalized convexity assumptions, we show that the strong Pareto Kuhn-Tucker optimality conditions are also sufficient for several popular locally Pareto-type optimality conditions for MOPEC.  相似文献   

6.
In this paper, we study several types of basic constraint qualifications in terms of Clarke/Fréchet coderivatives for generalized equations. Several necessary and/or sufficient conditions are given to ensure these constraint qualifications. It is proved that basic constraint qualification and strong basic constraint qualification for convex generalized equations can be obtained by these constraint qualifications, and the existing results on constraint qualifications for the inequality system can be deduced from the given conditions in this paper. The main work of this paper is an extension of the study on constraint qualifications from inequality systems to generalized equations.  相似文献   

7.
In this paper we consider a mathematical program with equilibrium constraints (MPEC) formulated as a mathematical program with complementarity constraints. Various stationary conditions for MPECs exist in literature due to different reformulations. We give a simple proof to the M-stationary condition and show that it is sufficient for global or local optimality under some MPEC generalized convexity assumptions. Moreover, we propose new constraint qualifications for M-stationary conditions to hold. These new constraint qualifications include piecewise MFCQ, piecewise Slater condition, MPEC weak reverse convex constraint qualification, MPEC Arrow-Hurwicz-Uzawa constraint qualification, MPEC Zangwill constraint qualification, MPEC Kuhn-Tucker constraint qualification, and MPEC Abadie constraint qualification.  相似文献   

8.
 We study a general multiobjective optimization problem with variational inequality, equality, inequality and abstract constraints. Fritz John type necessary optimality conditions involving Mordukhovich coderivatives are derived. They lead to Kuhn-Tucker type necessary optimality conditions under additional constraint qualifications including the calmness condition, the error bound constraint qualification, the no nonzero abnormal multiplier constraint qualification, the generalized Mangasarian-Fromovitz constraint qualification, the strong regularity constraint qualification and the linear constraint qualification. We then apply these results to the multiobjective optimization problem with complementarity constraints and the multiobjective bilevel programming problem. Received: November 2000 / Accepted: October 2001 Published online: December 19, 2002 Key Words. Multiobjective optimization – Variational inequality – Complementarity constraint – Constraint qualification – Bilevel programming problem – Preference – Utility function – Subdifferential calculus – Variational principle Research of this paper was supported by NSERC and a University of Victoria Internal Research Grant Research was supported by the National Science Foundation under grants DMS-9704203 and DMS-0102496 Mathematics Subject Classification (2000): Sub49K24, 90C29  相似文献   

9.
The Kuhn-Tucker type necessary conditions of weak efficiency are given for the problem of minimizing a vector function whose each component is the sum of a differentiable function and a convex function, subject to a set of differentiable nonlinear inequalities on a convex subset C of ℝ n , under the conditions similar to the Abadie constraint qualification, or the Kuhn-Tucker constraint qualification, or the Arrow-Hurwicz-Uzawa constraint qualification. Supported by the National Natural Science Foundation of China (No. 70671064, No. 60673177), the Province Natural Science Foundation of Zhejiang (No.Y7080184) and the Education Department Foundation of Zhejiang Province (No. 20070306).  相似文献   

10.
On uniqueness of Kuhn-Tucker multipliers in nonlinear programming   总被引:1,自引:0,他引:1  
Recently Fujiwara, Han and Mangasarian introduced a new constraint qualification which is a slight tightening of the well-known Mangasarian—Fromovitz constraint qualification. We show that this new qualification is a necessary and sufficient condition for the uniqueness of Kuhn—Tucker multipliers. We also show that it implies the satisfaction of second order necessary optimality conditions at a local minimum.  相似文献   

11.
The Kuhn–Tucker-type necessary optimality conditions are given for the problem of minimizing a max fractional function, where the numerator of the function involved is the sum of a differentiable function and a convex function while the denominator is the difference of a differentiable function and a convex function, subject to a set of differentiable nonlinear inequalities on a convex subset CC of RnRn, under the conditions similar to the Kuhn–Tucker constraint qualification or the Arrow–Hurwicz–Uzawa constraint qualification or the Abadie constraint qualification. Relations with the calmness constraint qualification are given.  相似文献   

12.
In convex optimization the significance of constraint qualifications is evidenced by the simple duality theory, and the elegant subgradient optimality conditions which completely characterize a minimizer. However, the constraint qualifications do not always hold even for finite dimensional optimization problems and frequently fail for infinite dimensional problems. In the present work we take a broader view of the subgradient optimality conditions by allowing them to depend on a sequence of ε-subgradients at a minimizer and then by letting them to hold in the limit. Liberating the optimality conditions in this way permits us to obtain a complete characterization of optimality without a constraint qualification. As an easy consequence of these results we obtain optimality conditions for conic convex optimization problems without a constraint qualification. We derive these conditions by applying a powerful combination of conjugate analysis and ε-subdifferential calculus. Numerical examples are discussed to illustrate the significance of the sequential conditions.  相似文献   

13.
In this paper, we are concerned with a multiobjective optimization problem with inequality constraints. We introduce a constraint qualification and derive the Kuhn-Tucker type necessary conditions for efficiency. Moreover, we give conditions which ensure the constraint qualification.This work was done while the author was visiting the University of California, Berkeley, California.  相似文献   

14.
A class of nonsmooth multiobjective fractional programming is formulated. We establish the necessary and sufficient optimality conditions without the need of a constraint qualification. Then a mixed dual is introduced for a class of nonsmooth fractional programming problems, and various duality theorems are established without a constraint qualification.  相似文献   

15.
We consider the optimal value reformulation of the bilevel programming problem. It is shown that the Mangasarian-Fromowitz constraint qualification in terms of the basic generalized differentiation constructions of Mordukhovich, which is weaker than the one in terms of Clarke’s nonsmooth tools, fails without any restrictive assumption. Some weakened forms of this constraint qualification are then suggested, in order to derive Karush-Kuhn-Tucker type optimality conditions for the aforementioned problem. Considering the partial calmness, a new characterization is suggested and the link with the previous constraint qualifications is analyzed.  相似文献   

16.
Mathematical programs with equilibrium constraints (MPEC) are nonlinear programs which do not satisfy any of the common constraint qualifications (CQ). In order to obtain first-order optimality conditions, constraint qualifications tailored to the MPECs have been developed and researched in the past. In this paper, we introduce a new Abadie-type constraint qualification for MPECs. We investigate sufficient conditions for this new CQ, discuss its relationship to several existing MPEC constraint qualifications, and introduce a new Slater-type constraint qualifications. Finally, we prove a new stationarity concept to be a necessary optimality condition under our new Abadie-type CQ.Communicated by Z. Q. Luo  相似文献   

17.
In this paper, necessary optimality conditions for nonlinear programs in Banach spaces and constraint qualifications for their applicability are considered. A new optimality condition is introduced, and a constraint qualification ensuring the validity of this condition is given. When the domain space is a reflexive space, it is shown that the qualification is the weakest possible. If a certain convexity assumption is made, then this optimality condition is shown to reduce to the well-known extension of the Kuhn-Tucker conditions to Banach spaces. In this case, the constraint qualification is weaker than those previously given.This work was supported in part by the Office of Naval Research, Contract Number N00014-67-A-0321-0003 (NRO 47-095).  相似文献   

18.
On Optimality Conditions for Generalized Semi-Infinite Programming Problems   总被引:5,自引:0,他引:5  
Generalized semi-infinite optimization problems (GSIP) are considered. We generalize the well-known optimality conditions for minimizers of order one in standard semi-infinite programming to the GSIP case. We give necessary and sufficient conditions for local minimizers of order one without the assumption of local reduction. The necessary conditions are derived along the same lines as the first-order necessary conditions for GSIP in a recent paper of Jongen, Rückmann, and Stein (Ref. 1) by assuming the so-called extended Mangasarian–Fromovitz constraint qualification. Using the ideas of a recent paper of Rückmann and Shapiro, we give short proofs of necessary and sufficient optimality conditions for minimizers of order one under the additional assumption of the Mangasarian–Fromovitz constraint qualification at all local minimizers of the so-called lower-level problem.  相似文献   

19.
《Optimization》2012,61(7):1013-1032
In this article we study non-smooth Lipschitz programming problems with set inclusion and abstract constraints. Our aim is to develop approximate optimality conditions for minimax programming problems in absence of any constraint qualification. The optimality conditions are worked out not exactly at the optimal solution but at some points in a neighbourhood of the optimal solution. For this reason, we call the conditions as approximate optimality conditions. Later we extend the results in terms of the limiting subdifferentials in presence of an appropriate constraint qualification thereby leading to the optimality conditions at the exact optimal point.  相似文献   

20.
《Optimization》2012,61(4-5):617-627
Without the need of a constraint qualification, we establish the necessary and sufficient optimality conditions for minimax fractional programming. Using these optimality conditions, we construct a mixed dual model which unifies the Mond–Weir dual, Wolfe dual and a parameter dual models. Several duality theorems are established. Consequently, this article partly solves the problem posed by Lai et al. [H.C. Lai, J.C. Liu and K. Tanaka (1999). Duality without a constraint qualification for minimax fractional programming. Journal of Optimization Theory and Applications, 101, 109–125.].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号