首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

This paper presents reduced-order nonlinear filtering schemes based on a theoretical framework that combines stochastic dimensional reduction and nonlinear filtering. Here, dimensional reduction is achieved for estimating the slow-scale process in a multiscale environment by constructing a filter using stochastic averaging results. The nonlinear filter is approximated numerically using the ensemble Kalman filter and particle filter. The particle filter is further adapted to the complexities of inherently chaotic signals. In particle filters, an ensemble of particles is used to represent the distribution of the state of the hidden signal. The ensemble is updated using observation data to obtain the best representation of the conditional density of the true state variables given observations. Particle methods suffer from the “curse of dimensionality,” an issue of particle degeneracy within a sample, which increases exponentially with system dimension. Hence, particle filtering in high dimensions can benefit from some form of dimensional reduction. A control is superimposed on particle dynamics to drive particles to locations most representative of observations, in other words, to construct a better prior density. The control is determined by solving a classical stochastic optimization problem and implemented in the particle filter using importance sampling techniques.

  相似文献   

2.
In this paper, an iteration process is considered to solve linear ill‐posed problems. Based on the randomness of the involved variables, this kind of problems is regarded as simulation problems of the posterior distribution of the unknown variable given the noise data. We construct a new ensemble Kalman filter‐based method to seek the posterior target distribution. Despite the ensemble Kalman filter method having widespread applications, there has been little analysis of its theoretical properties, especially in the field of inverse problems. This paper analyzes the propagation of the error with the iteration step for the proposed algorithm. The theoretical analysis shows that the proposed algorithm is convergence. We compare the numerical effect with the Bayesian inversion approach by two numerical examples: backward heat conduction problem and the first kind of integral equation. The numerical tests show that the proposed algorithm is effective and competitive with the Bayesian method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This paper derives a particle filter algorithm within the Dempster–Shafer framework. Particle filtering is a well-established Bayesian Monte Carlo technique for estimating the current state of a hidden Markov process using a fixed number of samples. When dealing with incomplete information or qualitative assessments of uncertainty, however, Dempster–Shafer models with their explicit representation of ignorance often turn out to be more appropriate than Bayesian models.The contribution of this paper is twofold. First, the Dempster–Shafer formalism is applied to the problem of maintaining a belief distribution over the state space of a hidden Markov process by deriving the corresponding recursive update equations, which turn out to be a strict generalization of Bayesian filtering. Second, it is shown how the solution of these equations can be efficiently approximated via particle filtering based on importance sampling, which makes the Dempster–Shafer approach tractable even for large state spaces. The performance of the resulting algorithm is compared to exact evidential as well as Bayesian inference.  相似文献   

4.
In this work, we investigate sequential Bayesian estimation for inference of stochastic volatility with variance‐gamma (SVVG) jumps in returns. We develop an estimation algorithm that combines the sequential learning auxiliary particle filter with the particle learning filter. Simulation evidence and empirical estimation results indicate that this approach is able to filter latent variances, identify latent jumps in returns, and provide sequential learning about the static parameters of SVVG. We demonstrate comparative performance of the sequential algorithm and off‐line Markov Chain Monte Carlo in synthetic and real data applications.  相似文献   

5.
We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation–maximization (SAEM) algorithm to maximize the likelihood function with the novelty of using approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.  相似文献   

6.
Abstract

We consider Bayesian inference when priors and likelihoods are both available for inputs and outputs of a deterministic simulation model. This problem is fundamentally related to the issue of aggregating (i.e., pooling) expert opinion. We survey alternative strategies for aggregation, then describe computational approaches for implementing pooled inference for simulation models. Our approach (1) numerically transforms all priors to the same space; (2) uses log pooling to combine priors; and (3) then draws standard Bayesian inference. We use importance sampling methods, including an iterative, adaptive approach that is more flexible and has less bias in some instances than a simpler alternative. Our exploratory examples are the first steps toward extension of the approach for highly complex and even noninvertible models.  相似文献   

7.
This article discusses inference on the order of dependence in binary sequences. The proposed approach is based on the notion of partial exchangeability of order k. A partially exchangeable binary sequence of order k can be represented as a mixture of Markov chains. The mixture is with respect to the unknown transition probability matrix θ. We use this defining property to construct a semiparametric model for binary sequences by assuming a nonparametric prior on the transition matrix θ. This enables us to consider inference on the order of dependence without constraint to a particular parametric model. Implementing posterior simulation in the proposed model is complicated by the fact that the dimension of θ changes with the order of dependence k. We discuss appropriate posterior simulation schemes based on a pseudo prior approach. We extend the model to include covariates by considering an alternative parameterization as an autologistic regression which allows for a straightforward introduction of covariates. The regression on covariates raises the additional inference problem of variable selection. We discuss appropriate posterior simulation schemes, focusing on inference about the order of dependence. We discuss and develop the model with covariates only to the extent needed for such inference.  相似文献   

8.
This paper develops a Bayesian approach to analyzing quantile regression models for censored dynamic panel data. We employ a likelihood-based approach using the asymmetric Laplace error distribution and introduce lagged observed responses into the conditional quantile function. We also deal with the initial conditions problem in dynamic panel data models by introducing correlated random effects into the model. For posterior inference, we propose a Gibbs sampling algorithm based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the mixture representation provides fully tractable conditional posterior densities and considerably simplifies existing estimation procedures for quantile regression models. In addition, we explain how the proposed Gibbs sampler can be utilized for the calculation of marginal likelihood and the modal estimation. Our approach is illustrated with real data on medical expenditures.  相似文献   

9.
Abstract

Recently developed small-sample asymptotics provide nearly exact inference for parametric statistical models. One approach is via approximate conditional and marginal inference, respectively, in multiparameter exponential families and regression-scale models. Although the theory is well developed, these methods are under-used in practical work. This article presents a set of S-Plus routines for approximate conditional inference in logistic and loglinear regression models. It represents the first step of a project to create a library for small-sample inference which will include methods for some of the most widely used statistical models. Details of how the methods have been implemented are discussed. An example illustrates the code.  相似文献   

10.
Data assimilation refers to the methodology of combining dynamical models and observed data with the objective of improving state estimation. Most data assimilation algorithms are viewed as approximations of the Bayesian posterior (filtering distribution) on the signal given the observations. Some of these approximations are controlled, such as particle filters which may be refined to produce the true filtering distribution in the large particle number limit, and some are uncontrolled, such as ensemble Kalman filter methods which do not recover the true filtering distribution in the large ensemble limit. Other data assimilation algorithms, such as cycled 3DVAR methods, may be thought of as controlled estimators of the state, in the small observational noise scenario, but are also uncontrolled in general in relation to the true filtering distribution. For particle filters and ensemble Kalman filters it is of practical importance to understand how and why data assimilation methods can be effective when used with a fixed small number of particles, since for many large-scale applications it is not practical to deploy algorithms close to the large particle limit asymptotic. In this paper, the authors address this question for particle filters and, in particular, study their accuracy (in the small noise limit) and ergodicity (for noisy signal and observation) without appealing to the large particle number limit. The authors first overview the accuracy and minorization properties for the true filtering distribution, working in the setting of conditional Gaussianity for the dynamics-observation model. They then show that these properties are inherited by optimal particle filters for any fixed number of particles, and use the minorization to establish ergodicity of the filters. For completeness we also prove large particle number consistency results for the optimal particle filters, by writing the update equations for the underlying distributions as recursions. In addition to looking at the optimal particle filter with standard resampling, they derive all the above results for (what they term) the Gaussianized optimal particle filter and show that the theoretical properties are favorable for this method, when compared to the standard optimal particle filter.  相似文献   

11.
Bayesian model averaging (BMA) is the state of the art approach for overcoming model uncertainty. Yet, especially on small data sets, the results yielded by BMA might be sensitive to the prior over the models. Credal model averaging (CMA) addresses this problem by substituting the single prior over the models by a set of priors (credal set). Such approach solves the problem of how to choose the prior over the models and automates sensitivity analysis. We discuss various CMA algorithms for building an ensemble of logistic regressors characterized by different sets of covariates. We show how CMA can be appropriately tuned to the case in which one is prior-ignorant and to the case in which instead domain knowledge is available. CMA detects prior-dependent instances, namely instances in which a different class is more probable depending on the prior over the models. On such instances CMA suspends the judgment, returning multiple classes. We thoroughly compare different BMA and CMA variants on a real case study, predicting presence of Alpine marmot burrows in an Alpine valley. We find that BMA is almost a random guesser on the instances recognized as prior-dependent by CMA.  相似文献   

12.
We propose a novel class of Sequential Monte Carlo (SMC) algorithms, appropriate for inference in probabilistic graphical models. This class of algorithms adopts a divide-and-conquer approach based upon an auxiliary tree-structured decomposition of the model of interest, turning the overall inferential task into a collection of recursively solved subproblems. The proposed method is applicable to a broad class of probabilistic graphical models, including models with loops. Unlike a standard SMC sampler, the proposed divide-and-conquer SMC employs multiple independent populations of weighted particles, which are resampled, merged, and propagated as the method progresses. We illustrate empirically that this approach can outperform standard methods in terms of the accuracy of the posterior expectation and marginal likelihood approximations. Divide-and-conquer SMC also opens up novel parallel implementation options and the possibility of concentrating the computational effort on the most challenging subproblems. We demonstrate its performance on a Markov random field and on a hierarchical logistic regression problem. Supplementary materials including proofs and additional numerical results are available online.  相似文献   

13.
A Bayesian inference for a linear Gaussian random coefficient regression model with inhomogeneous within-class variances is presented. The model is motivated by an application in metrology, but it may well find interest in other fields. We consider the selection of a noninformative prior for the Bayesian inference to address applications where the available prior knowledge is either vague or shall be ignored. The noninformative prior is derived by applying the Berger and Bernardo reference prior principle with the means of the random coefficients forming the parameters of interest. We show that the resulting posterior is proper and specify conditions for the existence of first and second moments of the marginal posterior. Simulation results are presented which suggest good frequentist properties of the proposed inference. The calibration of sonic nozzle data is considered as an application from metrology. The proposed inference is applied to these data and the results are compared to those obtained by alternative approaches.  相似文献   

14.
We consider the problem of discrete time filtering (intermittent data assimilation) for differential equation models and discuss methods for its numerical approximation. The focus is on methods based on ensemble/particle techniques and on the ensemble Kalman filter technique in particular. We summarize as well as extend recent work on continuous ensemble Kalman filter formulations, which provide a concise dynamical systems formulation of the combined dynamics-assimilation problem. Possible extensions to fully nonlinear ensemble/particle based filters are also outlined using the framework of optimal transportation theory.  相似文献   

15.
Bayesian networks (BNs) are widely used graphical models usable to draw statistical inference about directed acyclic graphs. We presented here Graph_sampler a fast free C language software for structural inference on BNs. Graph_sampler uses a fully Bayesian approach in which the marginal likelihood of the data and prior information about the network structure are considered. This new software can handle both the continuous as well as discrete data and based on the data type two different models are formulated. The software also provides a wide variety of structure prior which can depict either the global or local properties of the graph structure. Now based on the type of structure prior selected, we considered a wide range of possible values for the prior making it either informative or uninformative. We proposed a new and much faster jumping kernel strategy in the Metropolis–Hastings algorithm. The source C code distributed is very compact, fast, uses low memory and disk storage. We performed out several analyses based on different simulated data sets and synthetic as well as real networks to discuss the performance of Graph_sampler.  相似文献   

16.
In this paper various ensemble learning methods from machine learning and statistics are considered and applied to the customer choice modeling problem. The application of ensemble learning usually improves the prediction quality of flexible models like decision trees and thus leads to improved predictions. We give experimental results for two real-life marketing datasets using decision trees, ensemble versions of decision trees and the logistic regression model, which is a standard approach for this problem. The ensemble models are found to improve upon individual decision trees and outperform logistic regression.  相似文献   

17.
Yang  Minghan  Milzarek  Andre  Wen  Zaiwen  Zhang  Tong 《Mathematical Programming》2022,194(1-2):257-303

In this paper, a novel stochastic extra-step quasi-Newton method is developed to solve a class of nonsmooth nonconvex composite optimization problems. We assume that the gradient of the smooth part of the objective function can only be approximated by stochastic oracles. The proposed method combines general stochastic higher order steps derived from an underlying proximal type fixed-point equation with additional stochastic proximal gradient steps to guarantee convergence. Based on suitable bounds on the step sizes, we establish global convergence to stationary points in expectation and an extension of the approach using variance reduction techniques is discussed. Motivated by large-scale and big data applications, we investigate a stochastic coordinate-type quasi-Newton scheme that allows to generate cheap and tractable stochastic higher order directions. Finally, numerical results on large-scale logistic regression and deep learning problems show that our proposed algorithm compares favorably with other state-of-the-art methods.

  相似文献   

18.
Bayesian additive regression trees (BART) is a Bayesian approach to flexible nonlinear regression which has been shown to be competitive with the best modern predictive methods such as those based on bagging and boosting. BART offers some advantages. For example, the stochastic search Markov chain Monte Carlo (MCMC) algorithm can provide a more complete search of the model space and variation across MCMC draws can capture the level of uncertainty in the usual Bayesian way. The BART prior is robust in that reasonable results are typically obtained with a default prior specification. However, the publicly available implementation of the BART algorithm in the R package BayesTree is not fast enough to be considered interactive with over a thousand observations, and is unlikely to even run with 50,000 to 100,000 observations. In this article we show how the BART algorithm may be modified and then computed using single program, multiple data (SPMD) parallel computation implemented using the Message Passing Interface (MPI) library. The approach scales nearly linearly in the number of processor cores, enabling the practitioner to perform statistical inference on massive datasets. Our approach can also handle datasets too massive to fit on any single data repository.  相似文献   

19.
A variety of statistical problems (e.g. the x-intercept in linear regression, the abscissa of the point of intersection of two simple linear regression lines or the point of extremum in quadratic regression) can be viewed as questions of inference on nonlinear functions of the parameters in the general linear regression model. In this paper inferences on the threshold temperatures and summation constants in crop development will be made. A Bayesian approach for the general formulation of this problem will be developed. By using numerical integration, credibility intervals for individual functions as well as for linear combinations of the functions of the parameters can be obtained. The implementation of an odds ratio procedure is facilitated by placing a proper prior on the ratio of the relevant parameters.Financially supported by the University of the Orange Free State Research Fund.  相似文献   

20.
Logistic regression techniques can be used to restrict the conditional probabilities of a Bayesian network for discrete variables. More specifically, each variable of the network can be modeled through a logistic regression model, in which the parents of the variable define the covariates. When all main effects and interactions between the parent variables are incorporated as covariates, the conditional probabilities are estimated without restrictions, as in a traditional Bayesian network. By incorporating interaction terms up to a specific order only, the number of parameters can be drastically reduced. Furthermore, ordered logistic regression can be used when the categories of a variable are ordered, resulting in even more parsimonious models. Parameters are estimated by a modified junction tree algorithm. The approach is illustrated with the Alarm network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号