首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 891 毫秒
1.
The focal switch of cosine-Gaussian (CsG) beams passing through a system with the aperture and lens separated is studied analytically and numerically. It is shown that the focal switch of CsG beams can appear not only for the apertured case, but also for the unapertured case. The necessary condition for the focal switch is that truncation parameter α > αc and the beam parameter β > βc, αc, βc being the corresponding critical values. There exists a maximum of the relative transition height Δz sw as α varies, and Δz sw increases with increasing β and decreasing N w. The normalized axial intensity minimum I min / I max decreases with an increase of α and β, and I min / I max remains unchanged as N w varies.  相似文献   

2.
Based on the beam coherent-polarization (BCP) matrix approach and propagation law of partially coherent beams, the focal shift and focal switch of partially polarized Gaussian Schell-model (PGSM) beams passing through a system with the aperture and spherically aberrated lens separated is studied in detail. Our main attention is focused on the effect of spherical aberration and partial coherence on the focal shift and focal switch of PGSM beams. It is shown that for polarizer-free case there is no focal switch of PGSM beams, the focal shift of PGSM beams is closely related with spherical aberration coefficient C4, auto-coherence length σa, truncation parameter δ and relative position s/f between the aperture and lens in general, and is independent of the cross-coherence length σc. After inserting a polarizer the focal switch can take place. Numerical calculation results are given to illustrate how the spherical aberration and partial coherence affect the focal shift and focal switch of PGSM beams.  相似文献   

3.
The focal shift and focal switch of Bessel–Gaussian (B–G) beams passing through a lens system with or without aperture is studied in detail. For the unapertured case, the necessary condition for the focal switch and the expression for the amplitude of the focal switch are derived. It is shown that if the truncation parameter δδc or beam parameter ββc (δc, βc are the corresponding critical values), there exits only one axial intensity maximum, and the focusing without focal shift can be achieved for u/f=1 (u is the separation between the aperture and lens, f is the focal length of the lens); if δ>δc and β>βc, there exist two axial intensity maxima, and the focal switch can take place at the turning point u/f=1 for both apertured and unapertured cases. The dependence of the amplitude of focal switch and normalized axial intensity minimum on the truncation parameter, beam parameter and Fresnel number is also studied.  相似文献   

4.
On the basis of the polarization matrix and propagation equation of the cross-spectral density matrix, the spectral changes in the focal plane of vector Gaussian Schell-model (GSM) beams focused by an aperture lens are studied, where the influence of correlation and polarizer on the behavior of the spectral switch is stressed. It is found that the critical position uc, spectral minimum Smin, and transition height Δ of the spectral switch depend on the auto-correlation but do not depend on the cross-correlation of GSM beams if there is no polarizer. However, in the presence of the polarizer uc, Smin and Δ depend on both auto- and cross-correlations. The polarizer affects the spectral switch of vector GSM beams, whereas it does not affect the spectral switch of scalar GSM beams.  相似文献   

5.
The spectral behavior of polychromatic spatially fully coherent Gaussian beams diffracted at an aperture in the far field is studied based on the propagation law of the cross-spectral density function. Detailed numerical calculation results are presented, and illustrated. It is shown that the spectral changes take place in the vicinity of zeros of the Airy pattern, and the spectral modifier depends on the truncation parameter δ and diffraction angle α. The critical diffraction angle αc, at which the spectrum is split into two lines with equal height i.e., the spectral switch appears, varies with truncation parameter δ. The spectral switch vanishes if δ becomes large enough. A detailed comparison with the previous publications is given, showing somewhat extension made in our work.  相似文献   

6.
7.
The anisotropic and isotropic components of the ν2, ν5 rotation-vibrational Raman bands of 13CH3F were obtained separately. The two upper states are coupled by a strong second-order Coriolis resonance. The anisotropic spectrum was analyzed by means of a program system due to R. Escribano. A contour simulation and a least-squares fit of 233 assigned transitions yielded values for ν5, ΔA5, ΔA2, and Aζ5a, 5b(z). The 13C shifts of ν2 and ν5 were obtained from the isotropic spectrum.  相似文献   

8.
This article presents a variable flip-angle approach for balanced steady-state free precession (bSSFP) imaging, which allows increases in signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) while keeping specific absorption rate (SAR) constant or reduces SAR for given CNR and SNR. The gain in SNR is achieved by utilizing the higher signal in the transient phase. Flip-angle variation during the echo train is realized using a trigonometric function with M steps (ramp length). Variation is combined with a linear k-space reordering such that outer parts of k-space are sampled using a lower flip angle αmin, while the central part of k-space is acquired with a higher flip angle αmax. No additional preparation or dummy cycles are applied prior to data acquisition. Several variation schemes with different starting flip angles αmin and ramp length M are considered. For example, using αmin=1° and M=96, αmax can be set to 47° without exceeding SAR limits at 3 T and gaining up to 50% in SNR, while, conventionally, α=34° is the maximal possible flip angle. Resolution seems unaffected in volunteer imaging. In all cases, no transient artifacts due to flip-angle variation were observed. This article demonstrates the use of flip-angle variations in bSSFP to increase SNR and CNR while keeping SAR constant, which is especially important at higher field strengths. Flip-angle variation can also be combined with other methods such as parallel imaging techniques for further SAR reduction.  相似文献   

9.
Magnetotransport through one or several quasi-one-dimensional rings, in the presence of the Rashba (RSOI) and Dresselhaus (DSOI) terms of the spin–orbit interaction (SOI) and of a magnetic field B, is investigated. The RSOI field and an effective DSOI field are taken as ER=ER(sinγ1er+cosγ1ez) and ED=ED(sinγ2er+cosγ2ez), their strengths are denoted by α and β, respectively. The exact one-electron eigenvalues and eigenfunctions are obtained and used to evaluate the transmission as a function of α, β, and of the angles γ1,γ2. Because the RSOI term couples the electronic orbit (along the θ direction) with the Pauli matrices σz and σr while the DSOI term couples it with σθ, they affect the electronic spin transport through a ring in distinctly different ways. The resulting transmission shows a considerable structure as a function of the angles γ1 or γ2. The same holds for the transmission, versus α or β, with the SOI present only in one arm of the ring and for that through two rings with the same or different radii. Various results of the literature, valid for β=0, are readily recovered. For weak magnetic fields the influence of the Zeeman term on the transmission, assessed by perturbation theory, is negligible.  相似文献   

10.
The orange system of FeO has been reinvestigated using low-temperature molecular beam laser-induced fluorescence spectra, obtained by supersonic jet cooling. Two new weak bands have been found, and analyses of some of the previously known bands extended. Measurements of the 54Fe-56Fe isotope shifts have been made for most of the bands, and the hyperfine structure of the low-J lines has been recorded for two of the strongest bands of 57FeO. The isotope shifts are consistent with the presence of two 5Δi-5Δi transitions lying within 1000 cm−1; the origins of the Ω = 4 spin components lie at 5583 and 6110 Å, respectively. The hyperfine patterns and the spin-orbit structure indicate that the upper state electron configurations are (3dδ)3 (3dπ)2 (3dσ)1, (D5Δi, 5583 Å) and O(2pπ)3 (4sσ)1 (3dδ)3(3dπ)3, (D5Δi, 6110 Å). The bond length in the D′ state (r0 = 1.654 Å) has been obtained from a deperturbation of the 6110 Å band; it is only 0.035 Å longer than in the ground state, which indicates that electron promotion between the two π orbitals, nominally O(2pπ) and Fe(3dπ), has only a small effect on the strength of the bonding. The new isotope data still do not clarify the vibrational assignments of the higher levels, which are disorganized by extensive electronic perturbations.  相似文献   

11.
A family of commuting transfer matrices is shown to be associated to each symmetry transformation of a given Yang-Baxter algebra. This applies in lattices models and field theory.The Yang-Baxter algebra remains unchanged when an arbitrary parameter μl is associated to each lattice site. We generate in this way integrable one-dimensional hamiltonians with long-range couplings and disorder given by the <{;μ1<};. These operators are lattice versions of the non-local charges in sigma models. As a simple example we get a Dzialozhinski-Moriya interaction with an arbitrary coupling per site from the six-vertex model. A similar model with a disordered magnetic field follows too. Their exact solution by an algebraic Bethe ansatz is presented. We derive the excitations spectrum in terms of the density of parameters (μ).As another application, the total spin S2 is computed for a XXZ Heisenberg chain (μl ≡ 0) as a function of the anisotropy Δ (− ∞ < Δ < + ∞).  相似文献   

12.
We present the first QCD spectral sum rules analysis of the SU(3) breaking parameter ξ and an improved estimate of the renormalization group invariant (RGI) bag constant both entering into the B0d,s– mass-differences. The averages of the results from the Laplace and moment sum rules to order αs are and

, in units where fπ=130.7 MeV. Combined with the experimental data on the mass-differences ΔMd,s, one obtains the constraint on the CKM weak mixing angle |Vts/Vtd|220.0(1.1). Alternatively, using the weak mixing angle from the analysis of the unitarity triangle and the data on ΔMd, one predicts ΔMs=18.6(2.2) ps−1 in agreement with the present experimental lower bound and within the reach of Tevatron 2.  相似文献   

13.
The far-field properties and beam quality of vectorial nonparaxial Hermite–Laguerre–Gaussian (HLG) beams are studied in detail, where, instead of the second-order-moments-based M2 factor, the extended power in the bucket (PIB) and βparameter are used to characterize the beam quality in the far field and the intensity in the formulae is replaced by the z component of the time-averaged Poynting vector Sz. It is found that the Sz PIB and βparameter of vectorial nonparaxial HLG beams depend on the mode indices n, m, αparameter and waist-width-to-wavelength ratio w0/λ and the PIB and βparameter are additionally dependent on the bucket's size taken.  相似文献   

14.
Ideal Bose and Fermi systems are studied on the basis of a canonical ensemble, subject to the condition that their temperature is less than a given temperature Tmax. A single new parameter (the tau-parameter, τ) is needed to keep account of the new constraint. The parameter τ is shown to be the exponential of a pseudo-chemical potential that is linearly dependent on temperature. The inclusion of the τ- parameter leads to generalizations of usual thermodynamic quantities (internal energy, heat capacity and entropy) and various particular cases are discussed. The heat capacity of a Bose system can exhibit a maximum at a temperature less than the maximum temperature Tmax. The number of micro-states in the canonical ensemble is found to increase with τ. The heat capacity cV of a Fermi system of non-interacting spins exhibits a Schottky anomaly. The peak depends on τ, and for some cases cV/k can significantly exceed unity. The influence of τ on the entropy of the Fermi system and on the number of micro-states in the canonical ensemble is significant but not spectacular.  相似文献   

15.
The millimeter-wave spectrum of 2,3-dihydrofuran in the ground and five ring-puckering excited states has been measured in the frequency range 100–250 GHz. The ground and first ring-puckering excited states have been fitted to a two-state Hamiltonian including Coriolis coupling interaction. The determined energy difference of 18.684(7) cm−1between these states and theaandbtype coupling parameters are consistent with the ring-puckering potential function and the previously observed dependence of the centrifugal distortion constants ΔJK, ΔK, and δK. A small ring-puckering dependence of the quartic centrifugal distortion constants ΔJand δJhas been also observed. This dependence is well accounted for in terms of the ring-puckering potential function and the vibrational dependence of the rotational constants.  相似文献   

16.
The binding properties on theasinesin to human serum albumin (HSA) have been studied for the first time using fluorescence spectroscopy in combination with UV–vis absorbance spectroscopy. The results showed that theasinesin strongly quenched the intrinsic fluorescence of HSA through a static quenching procedure, and non-radiation energy transfer happened within molecules. The number of binding site was 1, and the efficiency of Förster energy transfer provided a distance of 4.64 nm between tryptophan and theasinesin binding site. At 298, 310 and 323 K, the quenching constants of HSA–theasinesin system were 2.55×103, 2.16×103 and 1.75×103 mol L−1. ΔHθ, ΔSθ and ΔGθ were obtained based on the quenching constants and thermodynamic theory (ΔHθ<0, ΔSθ>0 and ΔGθ<0). These results indicated that hydrophobic and electrostatic interactions are the mainly binding forces in the theasinesin–HSA system. In addition, the results obtained from synchronous fluorescence spectra showed that the binding of theasinesin with HSA could induce conformational changes in HSA.  相似文献   

17.
A new approach to the theory of temporal aberration for cathode lenses is given in the present paper. A definition of temporal aberration is given in which a certain initial energy of electron emission along the axial direction εz1 (0εz1ε0max) is considered. A new method to calculate the temporal aberration coefficients of cathode lenses named “direct integral method” is also presented. The “direct integral method” gives new expressions of the temporal aberration coefficients which are expressed in integral forms. The difference between “direct integral method” and “τ-variation method” is that the “τ-variation method” needs to solve the differential equations for the three of temporal geometrical aberration coefficients of second order, while the “direct integral method” only needs to carry out the integral calculation for all of these temporal aberration coefficients of second order.All of the formulae of the temporal aberration coefficients deduced from “direct integral method” and “τ-variation method” have been verified by an electrostatic concentric spherical system model, and contrasted with the analytical solutions. Results show that these two methods have got identical solutions and the solutions of temporal aberration coefficients of the first and second order are the same as with the analytical solutions. Although some forms of the results seem different, but they can be transformed into the same form. Thus, it can be concluded these two methods given by us are equivalent and correct, but the “direct integral method” is related to solve integral equations, which is more convenient for computation and could be suggested for use in practical design.  相似文献   

18.
Data on at rest show two resonant processes: (a) f0(1370)η,f0(1370)→σσ and ρρ, (b) η(1440)σ, η(1440)→ηπ+π. The branching ratio BR[f0(1370)→ρρ]/BR[f0(1370)→σσ]=0.98±0.25 in the mass range available here. Using data on , the ratio Γ5 for f0(1370). The effects of the strongly s-dependent width of f0(1370) are discussed in some detail.The η(1440) is observed decaying to ησ and a0(980)π, with strong destructive interference between them. In its decay to a0(980)π, a narrow peak appears in the ηπ mass spectrum, but 30–50 MeV above that usually attributed to a0(980) and significantly above the KK threshold. This effect is explained naturally by a two-step process: η(1440)→K*(890)K followed by rescattering of the two kaons through a0(980) to ηπ above the KK threshold.  相似文献   

19.
Harper's operator is the self-adjoint operator on defined by

. We first show that the determination of the spectrum of the transition operator on the Cayley graph of the discrete Heisenberg group in its standard presentation, is equivalent to the following upper bond on the norm of Hθ,: Hθ,≤ 2(1 + √2 + cos(2πθ)). We then prove this bound by reducing it to a problem on periodic Jacobi matrices, viewing Hθ, as the image of Hθ = Uθ + θ* + Vθ + Vθ* in a suitable representation of the rotation algebra Aθ. We also use powers of Hθ to obtain various upper and lower bounds on Hθ = maxHθ,. We show that “Fourier coefficients” of Hθk in Aθ have a combinatorial interpretation in terms of paths in the square lattice 2. This allows us to give some applications to asymptotics of lattice paths combinatorics.  相似文献   

20.
The inelastic Coulomb scattering rate 1/τin of conduction electrons has been theoretically evaluated in the presence of localized states such as quantum dots. By a diagrammatical method, we have formulated 1/τin and its relation to the conductivity σloc(ω) through localized states. The dependence of τin on temperature T is examined in the case that σloc(ω) follows the Mott's model. It is found that 1/τin varies as T2(ln Δ/T)d+1 where d is the dimensionality and Δ is tunneling energy between the localized states in the asymptonic T = 0 limit, in agreement with Imry's calculation. It is also found that calculated 1/τin deviates from T2(ln Δ/T)d+1 as T increases, suggesting the importance of correction term at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号