首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用高温固相法,先在空气气氛下制备了SrAl2O4 ∶ Eu,Dy,后对其进行还原→氧化→还原处理。X射线衍射结果表明,经过还原→氧化→还原处理后样品的晶体结构没有改变。样品的发射光谱测试表明,在高温空气气氛下有少量的Eu3+还原成Eu2+。Eu3+和Eu2+有不同的发光特性,Eu3+产生的是线状特征光谱,发射峰值在592,616 nm。Eu2+产生的是带状光谱,带的中心位置在513 nm。经过还原处理的样品和经过氧化处理的样品相比,Eu2+的浓度得到显著提高,而Eu3+的浓度则急剧下降。对Eu2+的氧化、Eu3+的还原的机理进行了细致地讨论。另外,样品的热释光谱测试表明,经过氧化气氛处理和经过还原气氛处理过的样品的热释光峰值有很大的变化,但陷阱能级深度基本不变,在0.65 eV左右。这表明,对长余辉材料SrAl2O4 ∶ Eu,Dy进行还原→氧化→还原处理,Eu离子价态和发光强度会产生变化,并不影响其中Dy离子的陷阱能级。  相似文献   

2.
稀土掺杂长余辉发光玻璃的研究   总被引:8,自引:1,他引:7  
分别采用空气气氛和还原气氛,制备了稀土Eu2O3,Dy2O3掺杂的铝硅酸盐玻璃,利用荧光光谱仪对样品进行了测试。结果表明:空气气氛条件下制备的铝硅酸盐玻璃样品均不具备长余辉发光性能, 其激发光谱和发光光谱均是Eu3+的5Di(i=0, 1)→7Fj(j=0~4)跃迁的典型光谱。经还原气氛处理后,单掺和双掺的铝硅酸盐玻璃样品均具有长余辉发光现象,单掺Eu2+的发光峰位于462 nm,而双掺Eu2+和Dy3+的发光峰位于457 nm,且双掺Eu2+和Dy3+的样品陷阱能级较深,样品的发光持续时间长达12 h以上。  相似文献   

3.
Eu,Dy共掺铝硼硅酸盐的长余辉发光玻璃   总被引:5,自引:4,他引:1  
选择铝硼硅酸盐玻璃体系,高温熔融法制备了Eu,Dy掺杂的铝硼硅酸盐基质透明的玻璃,并对其进行了激发光谱和发射光谱的表征分析。实验结果表明:在空气气氛条件下制备的Eu^3+,Dy^3+掺杂的铝硼硅酸盐基质玻璃样品并不具备长余辉发光特性;而经过还原气氛处理后,Eu离子以二价形式存在,样品具有长余辉发光现象。其激发光谱是位于250-450nm的宽带谱,发光光谱峰值位于462nm处。  相似文献   

4.
SrAl2O4∶Eu2-,Dy3+长余辉发光材料因耐水性差而使其应用受到极大限制.利用快速燃烧法对SrAl2O4∶ Eu2+,Dy3+长余辉发光材料进行表面处理,以X射线粉末衍射、X射线光电子能谱、扫描电镜及荧光光谱等对表面处理前后SrAl2O4∶ Eu2,By3长余辉发光材料进行表征.实验结果表明:经燃烧法表面处理后...  相似文献   

5.
采用高温固相法在1 350 ℃弱还原气氛下制备了Sr1-xBaxAl2O4:Eu2+ ,Dy3+ (x=0,0.2,0.4,0.6,0.8,1.0)长余辉材料,并对其微观结构和发光特性进行了分析.X射线衍射结果表明,当钡的掺杂摩尔分数x<0.4时,样品晶体结构为SrAl2O4单斜晶系结构;当x≥0.4时,样品晶体结构为BaAl2O4六角晶系结构;而且随着钡对锶的取代,两种晶体结构的晶格常数都发生了一定程度的膨胀.光致发光测试结果表明,当x从0增大到1.0时,样品发射波长峰值也相应由515 nm逐渐蓝移到494 nm.通过热释光谱测试表明, SrAl2O4结构的样品的热释光峰所对应的温度比BaAl2O4 结构的要高,且对应SrAl2O4结构的样品的余辉时间更长,初始亮度更高.  相似文献   

6.
SrS∶Eu,Sm光存储机理的研究   总被引:1,自引:0,他引:1  
采用高温固相反应法在还原气氛下制备了SrS:Eu,Sm样品,利用荧光光谱仪测量了这种光存储材料的激发光谱和发射光谱.将样品用紫外灯(265 nm)照射激发饱和后,再用980 nm的红外激光器激励,利用荧光光谱仪测试得到了峰值位于599 nm的光激励发光光谱.此外还利用热释光谱仪测试了样品的热释光谱.探讨了SrS:Eu,Sm的光存储机理,认为引入的稀土离子在SrS的带隙中形成分裂能级.当用紫外光照射材料时,Eu的电子从基态被激发到激发态或基质材料的导带,其中一部分电子被辅助激活剂Sm的陷阱俘获,实现信息写入.当材料被与陷阱深度相当的红外光激励时,电子陷阱Sm2 俘获的电子才可能跃出俘获能级,与空穴在Eu的激发态和基态能级上复合,多余的能量以可见光的形式释放出来,实现信息读出.  相似文献   

7.
采用高温固相法在不同的气氛条件下合成了BaAl12O19:Eu2+/Eu3+,Dy3+发光材料。X射线衍射(XRD)表明:实验得到了纯净的BaAl12O19相结构,Eu和Dy的掺入并未改变相结构。通过比较发现,Eu和Dy掺杂后导致XRD衍射峰向高角度有微小移动,显示Eu和Dy取代晶格中Ba后使面间距发生变化。发射光谱表明:在不同条件下合成的样品都存在Eu2+的4f65d1→4f7之间的宽带跃迁;空气气氛下合成的样品中Eu2+的宽带跃迁的存在表明样品中发生了自还原现象。Dy3+的加入使样品发光增强,同时样品具备了长余辉特性。还原气氛下合成的Eu和Dy共掺样品的余辉衰减和热释光研究表明所得样品具有良好的室温和高温长余辉性能。  相似文献   

8.
CaS∶Eu, Sm是一种典型的电子俘获型光存储材料,文章采用湿法在还原气氛中制备了CaS∶Eu, Sm粉末样品。测量了这种光存储材料的XRD、激发光谱、发射光谱、光激励发光光谱、热释光谱以及光激励发光衰减曲线。XRD结果表明样品在1 050 ℃晶格已经形成。光谱测试结果说明紫外光可激发该材料,作为信息写入光源。样品被紫外光源饱和激发后,用980 nm红外激光激励,发射出峰值位于635 nm的红光。光激励发光起初衰减较快,随后有一个较长的平缓期。且样品具有合适深度的陷阱能级,能够稳定存储信息。对CaS∶Eu, Sm的光存储机理进行了探讨。  相似文献   

9.
采用溶胶-凝胶法在还原气氛下制备了Sr2MgSi2O7∶Eu2+,xBi3+(x=0,0.02,0.04,0.06,0.08,0.1)荧光粉,并用XRD、TG-DTA及激发与发射谱仪对样品的结构及发光性能进行了表征.结果发现:单掺杂Bi3+的Sr2MgSi2O7样品的发射光谱所用的材料的激发光谱为一主峰为286 nm的宽带谱,这是由于激发态时Bi3+的3p1→1S0电子能级跃迁而造成的;单掺杂Eu2+的Sr2MgSi2O7样品的发射光谱所用的材料的激发光谱为一主峰为358 nm的宽带谱,这是典型的Eu2+的4f65d3→4f7跃迁而引起的.当Bi3+离子掺杂到Sr2MgSi2O7∶Eu2样品的摩尔分数为0.04时,样品的发射强度是未掺杂Bi3离子样品的1.9倍.  相似文献   

10.
利用水热法制备得到NaYbF4∶0.01%Tm3+,20% Eu3+上转换材料,利用X射线衍射分析、扫描电子显微镜及光谱测试技术分别对其进行了结构、形貌以及光谱性质的表征.在980 nm近红外激光激发下,得到了Eu3+的可见到紫外范围的上转换荧光发射.分析表明:共掺杂NaYbF4纳米材料中Tm3+到Eu3+离子的能量传递对布居Eu3+离子的激发态能级,获得Eu3+的上转换发光起着至关重要的作用.另外,在实验中首次获得了Eu3+对应于3P0→7Fj(j=0,1,2)能级跃迁的上转换光发射.  相似文献   

11.
SrAl_2O_4∶Eu,Dy发光材料的制备及其特性研究   总被引:1,自引:0,他引:1  
采用高温固相合成法制得了SrAl2 O4∶Eu2 + ,Dy3 + 发光材料。该磷光体的合成温度在 130 0~ 15 0 0℃范围。X 射线衍射分析 (XRD)结果表明该磷光体为SrAl2 O4晶体结构 ,属单斜晶系。其晶格常数为 :a =8 4 4 2 4 ,b =8 82 2 ,c =5 16 0 7 ,β =93 4 15°。SrAl2 O4∶Eu2 + ,Dy3 + 发光材料的激发光谱和发射光谱均为宽带谱 ,激发谱峰位在 30 0~ 4 5 0nm范围内 ,发射波长在 5 2 0nm附近。这一结果表明该材料的发光是由Eu2 +的 5d→ 4f宽带跃迁产生的。不同的制备条件 ,如烧成温度、保温时间等对发光材料的显微结构及其发光性能有较大的影响  相似文献   

12.
对比研究了制备方法(水热法与高温固相法)、激发条件、Eu离子浓度对Ca2B5O9Cl∶Eu发光体光谱特性及制备条件对晶体形貌的影响。结果表明,水热法制备的Ca2B5O9Cl∶Eu发光体在254nm激发下主要以Eu3 的5D0→7FJ(J=1,2,3,4)跃迁发射为主,365nm激发下则以Eu2 的4f65d1→8S7/2跃迁发射为主。高温固相法制备的发光体在365nm激发下主要是Eu2 的4f65d1→8S7/2跃迁发射,而254nm激发下Eu2 和Eu3 的发射均较弱。Eu浓度对Ca2B5O9Cl∶Eu的光谱特性影响较小,而制备方法和激发条件却对其影响较大。SEM揭示了空气条件与还原气氛制备的产品结晶完美、表面光滑、颗粒度在0.82~1.06μm之间。  相似文献   

13.
采用低温燃烧合成(LCS)法制备了存储型上转换发光材料CaS∶Eu,Sm,并对其上转换发光机理进行了研究.研究表明:样品的激发光谱位于200~600nm之间,紫外或可见光均可有效地激发该材料来完成充能过程,且可见光激发占优势;样品的红外响应光谱范围为800~1600nm,由辅助激活离子Sm所形成的劈裂的深陷阱能级是该材料具有宽频谱红外转换特性的根本原因;样品的热释光谱高温峰值位于351.02℃,计算得到的陷阱能级深度为0.82eV,深度适中,利于激发能的储存和上转换发光的产生.  相似文献   

14.
采用高温固相法合成了适合近紫外光、蓝光激发的K2ZnSiO4∶Eu3+红色荧光粉,研究了该荧光粉的发光特性。XRD结果显示,所合成的荧光粉主晶相为K2ZnSiO4。样品的激发光谱由O2-→Eu3+电荷迁移带(200~350nm)和Eu3+离子的特征激发峰(350~500nm)组成,最强峰位于396nm,次强峰位于466nm。在396nm和466nm激发下,样品均呈多峰发射,分别由Eu3+离子的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,其中619nm处峰值最大。增加Eu3+离子的掺杂浓度,荧光粉的发光逐渐增强。在实验测定的浓度范围内,未出现浓度猝灭现象。不同Eu3+浓度样品的色坐标均位于色品图红光区,非常接近NTSC标准。  相似文献   

15.
GdVO4∶Eu3+的激发光谱特性研究   总被引:2,自引:1,他引:1       下载免费PDF全文
测量了GdVO4 ∶Eu3 +在室温下的光致发光光谱 ;研究了不同掺杂方式和烧结气氛对多晶GdVO4 ∶Eu3 +发光性质的影响 ,探讨了GdVO4 ∶Eu3+的激发光谱在 2 0 0~ 35 0nm范围内激发带的来源和GdVO4 ∶Eu3+中的能量传递。在 2 0 0~ 35 0nm范围内的激发带可解释为来自于钒酸根团的配体O到V的电荷迁移跃迁吸收 ;硝酸溶液使部分正GdVO4 形成多钒酸盐 ,还原气氛使GdVO4 产生O空位和部分V变价 ,影响了钒酸根团间的电荷迁移跃迁吸收和钒酸根团间、钒酸根团与Eu3 +间的能量传递 ,产生激发谱带蓝移和激发带间强度比例变化。GdVO4 中VO3 -4 的π轨道能使得VO3 -4 和稀土离子 (Gd3+、Eu3+)的电子波函数有效地重叠 ,从而VO3 -4 和稀土离子可通过交换作用有效地传递能量。GdVO4 ∶Eu3+在 2 0 0nm处的吸收很弱 ,在此位置也没有Gd3 +或Eu3+的 4fn -15d的吸收和明显的 4fn 高能级吸收 ,而激发却十分有效 ,可解释为由于存在VO3 -4 与Gd3 +或Eu3+的 4fn 高能级间有效的能量传递所致 ;由于Gd3 +的特征发射恰好在基质的强激发带 ,且Gd3+的特征发射没有出现 ,可存在Gd3 +→VO3-4 →Eu3 +的能量传递。Gd3+的6GJ、6PJ能级间隔与Eu3 +的7F1、5D0 能级间隔相近 ,处于6GJ态的Gd3 +可通过共振能量传递激发Eu3 +到5D0 态 ,这可导致Gd3 +  相似文献   

16.
采用溶胶凝胶法制备了Sr3Al2O6:Eu2+,Dy3+红色长余辉发光材料,利用X射线衍射仪对材料的物相进行了分析,结果表明,1200℃下制备的样品的物相为Sr3Al2O6,少量的Eu和Dy掺杂没有影响样品的相组成.采用荧光分光光度计、照度计测定了样品的发光特性.结果表明Sr3Al2O6:Eu2+和Sr3Al2O6:Eu2+,Dy3+的激发光谱均为激发峰位于473 nm的宽带谱.Sr3Al2O6:Dy3+的发射峰位于530.1 nm,对应于Dy3+代替Sr2+位置后基质中形成的施主-受主对Dy·Sr-V″Sr的重新组合.Sr3-0.02-yAl2O6:0.02Eu2+,yDy3+(0相似文献   

17.
采用高温固相法在还原气氛下合成了Ca9(1-x-y)Al(PO4)7:xCe3+,yDy3+荧光材料,并对其发光特性进行了研究。XRD测试表明所合成样品为纯相Ca9Al(PO4)7晶体。在268 nm紫外光激发下,Ca9Al(PO4)7:Ce3+呈现峰值位于363 nm的宽带发射。在350 nm近紫外光激发下,Ca9Al(PO4)7:Dy3+发射光谱为窄带谱,主峰分别位于483 nm和574 nm,对应Dy3+的4F9/2→6H15/2和4F9/2→6H13/2特征跃迁,呈黄白光发射。荧光光谱表明:Ce3+,Dy3+共掺之后,Ce3+不仅对Dy3+的特征发射有明显的敏化作用,而且通过调节Ce3+和Dy3+的掺杂比例,可实现从黄白光到白光的颜色变化。研究发现:Ca9(1-x-y)Al(PO4)7:xCe3+,yDy3+样品中,掺杂离子的最佳摩尔分数为x=0.02,y=0.02,此时色坐标为(0.306,0.313)。  相似文献   

18.
王飞  田一光  张乔  赵文光 《光子学报》2014,40(9):1312-1316
采用高温固相法在弱还原气氛下制备了Sr0.955Al2-xGaxSi2O8∶Eu2+ (x=0~1.0)系列荧光粉,研究了Ga3+置换铝Al3+对晶体结构和光谱特性的影响.Ga3+进入SrAl2Si2O8晶格与Al3+发生类质同相替代使晶胞参量a、b、c、β和晶胞体积V都随Ga3+置换量呈线性增大,表明形成了连续固溶体.镓置换铝对晶胞参量c的影响最明显,b其次,a最小.Eu2+的宽带激发光谱位于230~400 nm,表观峰值位于350 nm,可由267 nm、305 nm、350 nm和375 nm四个峰拟合而成.随着镓置换量增加,较短波长的三个激发峰发生红移并且267 nm和350 nm峰强度减弱,305 nm峰强度明显增强,375 nm峰位和强度基本不变,表观激发峰半高宽由109 nm减小至98 nm,基本不随镓置换量变化.发射光谱位于380~600 nm为不对称宽带,可由406 nm和441 nm两峰拟合而成并且随Ga3+置换量增加线性红移,拟合发射光谱峰面积之比线性递增,Ga3+进入晶格对较长波长发射中心影响较大.Ga3+置换量为1.0 mol时,表观发射峰位从407 nm线性红移至422 nm,表观峰值随Ga3+置换量线性增大,半高宽由58 nm增加至79 nm.镓置换铝造成Eu-O距离变小,发光中心Eu2+所处晶体场增强,5d轨道能级分裂变大,最低发射能级下移.  相似文献   

19.
采用高温固相反应利用原料CaCO3,MgO,SiO2和Eu2O3合成了CaMgSi2O6∶Eu3 样品,并研究了其结构特性、光谱特性。CaMgSi2O6∶Eu3 属于单科晶系,基质掺入Eu离子后结构没有明显变化。CaMgSi2O6∶Eu3 在147nm真空紫外光激发下呈红色发射,发射主峰位于611nm,是Eu3 的5D0→7F2跃迁的典型发射。当Eu3 的相对摩尔浓度在0.02到0.10mol之间变化时,由相关数据可以发现有浓度猝灭现象发生。CaMgSi2O6∶Eu2 在172nm真空紫外光激发下呈蓝色发射,发射主峰位于452nm,是Eu2 的5d→4f跃迁的典型发射。添加不同浓度的H3BO3后可大大提高样品的发光强度。  相似文献   

20.
采用低温燃烧合成(LCS)法制备了存储型上转换发光材料CaS∶Eu,Sm,并对其上转换发光机理进行了研究。研究表明:样品的激发光谱位于200~600nm之间,紫外或可见光均可有效地激发该材料来完成充能过程,且可见光激发占优势;样品的红外响应光谱范围为800~1600nm,由辅助激活离子Sm所形成的劈裂的深陷阱能级是该材料具有宽频谱红外转换特性的根本原因;样品的热释光谱高温峰值位于351.02℃,计算得到的陷阱能级深度为0.82eV,深度适中,利于激发能的储存和上转换发光的产生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号