首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large cationic triangular metallo‐prism, [Ru6(p‐PriC6H4Me)6(tpt)2(dhbq)3]6+ ( 1 )6+, incorporating p‐cymene ruthenium building blocks, bridged by 2,5‐dihydroxy‐1,4‐benzoquinonato (dhbq) ligands, and connected by two 2,4,6‐tri(pyridin‐4‐yl)‐1,3,5‐triazine (tpt) subunits, allows the permanent encapsulation of the triphenylene derivatives hexahydroxytriphenylene, C18H6(OH)6 and hexamethoxytriphenylene, C18H6(OMe)6. These two cationic carceplex systems [C18H6(OH)6⊂ 1 ]6+ and [C18H6(OMe)6⊂ 1 ]6+ have been isolated as their triflate salts. The molecular structure of these systems has been established by one‐dimensional 1H ROESY NMR experiments as well as by the single‐crystal structure analysis of [C18H6(OMe)6⊂ 1 ][O3SCF3]6.  相似文献   

2.
3.
4.
5.
A one‐handed 310‐helical hexapeptide is efficiently encapsulated within the helical cavity of st‐PMMA when a fullerene (C60) derivative is introduced at the C‐terminal end of the peptide. The encapsulation is accompanied by induction of a preferred‐handed helical conformation in the st‐PMMA backbone with the same‐handedness as that of the hexapeptide to form a crystalline st‐PMMA/peptide‐C60 inclusion complex with a unique optically active helix‐in‐helix structure. Although the st‐PMMA is unable to encapsulate the 310‐helical peptide without the terminal C60 unit, the helical hollow space of the st‐PMMA is almost filled by the C60‐bound peptides. This result suggests that the C60 moiety can serve as a versatile molecular carrier of specific molecules and polymers in the helical cavity of the st‐PMMA for the formation of an inclusion complex, thus producing unique supramolecular soft materials that cannot be prepared by other methods.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Synthesis and Crystal Structure of the Complexes [(Me2PhP)3Cl2Re≡N‐RuCl2(C6H6)] and [(Me2PhP)3Cl2Re≡N‐RhCl(COD)] The heteronuclear complex [(Me2PhP)3Cl2Re≡N‐RuCl2(C6H6)] ( 1 ) is obtained by the reaction of [ReNCl2(PMe2Ph)3] with [RuCl2(C6H6)]2 in C6H5CN in form of red crystals with the composition 1 ·C6H5CN crystallizing in the monoclinic space group P21/c with a =1149.77(8), b = 3085.9(3), c = 1172.1(1) pm, β = 104.766(9)° and Z = 4. In the dinuclear complex the complex fragment [RuCl2(C6H6)] is connected by an asymmetric nitrido bridge with the nitrido complex [ReNCl2(PMe2Ph)3]. The nitrido bridge is characterised by a bond angle Re‐N‐Ru of 170.6(3)° and distances Re‐N = 170.2(5) and Ru‐N = 199.0(5) pm. The reaction of [ReNCl2(PMe2Ph)3] with [RhCl(COD)]2 in benzonitrile yields orange crystals of [(Me2PhP)3Cl2Re≡N‐RhCl(COD)] ( 2 ) with the space group P21/c and a = 1522.3(2), b = 1274.85(4), c = 1921.2(2) pm, β = 106.759(7)° and Z = 4. The monovalent Rh atom exhibits a square planar coordination with the two π‐bonds of the cycloocta‐1, 5‐diene occupying cis positions. The distances in the almost linear nitrido bridge (Re‐N‐Rh = 174.8(4)°>) are Re‐N = 172.2(6) pm and Rh‐N = 195.6(6) pm.  相似文献   

15.
16.
17.
18.
19.
20.
Slow crystallisation at lowered temperature yielded crystals of the “third‐generation” tris(pyrazolyl)borate transfer agent p‐BrC6H4TpCs (Tp′Cs) 1 (triclinic; P$\bar{1}$ ; a = 8.540(4), b = 15.045(6), c = 15.879(7) Å; α = 65.853(8), β = 88.457(8), γ = 75.056(8)°; V = 1791.4(13) Å3; Z = 4). The central caesium ion in 1 interacts with three individual p‐BrC6H4Tp ligands in two different chelating fashions.In particular, κ1N‐coordination and η5‐π‐coordination of pyrazole moieties as well as η6‐π‐coordination of the p‐BrC6H4 substituent are observed. Further, comparable coordination of neighbouring caesium ions leads to the formation of polymeric structures connected by two bridging modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号