首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A diruthenium complex with a redox‐active amine bridge has been designed, synthesized, and studied by single‐crystal X‐ray analysis and DFT and TDDFT calculations. It shows three well‐separated redox processes with exclusive near‐infrared (NIR) absorbance at each redox state. The electropolymerized film of a related vinyl‐functionalized complex displays multistate NIR electrochromism with low operational potential, good contrast ratio, and long retention time. Flip‐flop, flip‐flap‐flop, and ternary memories have been realized by using the obtained film (ca. 15–20 nm thick) with three electrochemical inputs and three NIR optical outputs that each displays three levels of signal intensity.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
We report an effective modulation of the quantum transport in molecular junctions consisting of aggregation‐induced‐emission(AIE)‐active molecules. Theoretical simulations based on combined density functional theory and rate‐equation method calculations show that the low‐bias conductance of the junction with a single tetraphenylethylene (TPE) molecule can be completely suppressed by strong electron–vibration couplings, that is, the Franck‐Condon blockade effect. It is mainly associated with the low‐energy vibration modes, which is also the origin of the fluorescence quenching of the AIE molecule in solution. We further found that the conductance of the junction can be lifted by restraining the internal motion of the TPE molecule by either methyl substitution on the phenyl group or by aggregation, a mechanism similar to the AIE process. The present work demonstrates the correlation between optical processes of molecules and quantum transport in their junction, and thus opens up a new avenue for the application of AIE‐type molecules in molecular electronics and functional devices.  相似文献   

11.
12.
Here, we demonstrate the possibility of rationally designing nanoparticle receptors with targeted affinity and selectivity for specific small molecules. We used atomistic molecular‐dynamics (MD) simulations to gradually mutate and optimize the chemical structure of the molecules forming the coating monolayer of gold nanoparticles (1.7 nm gold‐core size). The MD‐directed design resulted in nanoreceptors with a 10‐fold improvement in affinity for the target analyte (salicylate) and a 100‐fold decrease of the detection limit by NMR‐chemosensing from the millimolar to the micromolar range. We could define the exact binding mode, which features prolonged contacts and deep penetration of the guest into the monolayer, as well as a distinct shape of the effective binding pockets characterized by exposed interacting points.  相似文献   

13.
14.
15.
16.
17.
In most junctions built by wiring a single molecule between two electrodes, the electrons flow along only one axis: between the two anchoring groups. However, molecules can be anisotropic, and an orientation‐dependent conductance is expected. Here, we fabricated single‐molecule junctions by using the electrode potential to control the molecular orientation and access individual elements of the conductivity tensor. We measured the conductance in two directions, along the molecular plane as the benzene ring bridges two electrodes using anchoring groups (upright) and orthogonal to the molecular plane with the molecule lying flat on the substrate (planar). The perpendicular (planar) conductance is about 400 times higher than that along the molecular plane (upright). This offers a new method for designing a reversible room‐temperature single‐molecule electromechanical switch that controllably employs the electrode potential to orient the molecule in the junction in either “ON” or “OFF” conductance states.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号