首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
6.
The structure of one of the first permanently porous metal phosphonates, MIL‐91(Al) was re‐determined using high resolution synchrotron powder X‐ray diffraction data. The new model is in a lower symmetry space group, with no disordered ligands in the structure, whilst remaining otherwise consistent with the reported compound. New milder synthetic conditions were also developed.  相似文献   

7.
Metal‐organic frameworks (MOFs) show promising characteristics for hydrogen storage application. In this direction, modification of under‐utilized large pore cavities of MOFs has been extensively explored as a promising strategy to further enhance the hydrogen storage properties of MOFs. Here, we described a simple methodology to enhance the hydrogen uptake properties of RHA incorporated MIL‐101 (RHA‐MIL‐101, where RHA is rice husk ash—a waste material) by controlled doping of Li+ ions. The hydrogen gas uptake of Li‐doped RHA‐MIL‐101 is significantly higher (up to 72 %) compared to the undoped RHA‐MIL‐101, where the content of Li+ ions doping greatly influenced the hydrogen uptake properties. We attributed the observed enhancement in the hydrogen gas uptake of Li‐doped RHA‐MIL‐101 to the favorable Li+ ion‐to‐H2 interactions and the cooperative effect of silanol bonds of silica‐rich rice‐husk ash incorporated in MIL‐101.  相似文献   

8.
9.
New bis(dipyrrinato)zinc(II) complex micro‐ and nanosheets containing zinc(II) porphyrin ( N2 ) are synthesized. A liquid/liquid interface method between dipyrrin porphyrin ligand L2 and zinc acetate produces N2 with a large domain size. N2 can be layered quantitatively onto a flat substrate by a modified Langmuir–Schäfer method. N2 deposited on a SnO2 electrode functions as a photoanode for a photoelectric conversion system. The photoresponse of N2 covers the whole visible wavelength range (400–650 nm), with a maximum quantum efficiency of more than twice that of a bis(dipyrrinato)zinc(II) complex nanosheet without porphyrin.  相似文献   

10.
11.
12.
13.
14.
15.
Metal‐organic frameworks (MOFs) nanoparticles in combination with a nonionic surfactant (Pluronic L‐121) are used to stabilize dicyclopentadiene (DCPD)‐in‐water high internal phase emulsions (HIPEs). The resulting HIPEs containing the MIL‐100(Fe) nanoparticles (MIL: Materials of Institut Lavoisier) at the interface between the oil‐ and the water‐phases are then cured, and 100 μm thick, fully open, hierarchically porous hybrid membranes are obtained. The properties of the MIL‐100(Fe)@pDCPD polyHIPE membranes are characterized and it is found that up to 14 wt% of the MIL‐100(Fe) nanoparticles are incorporated in the hybrid material resulting in an increase of the microporosity up to 130 m2 g−1. Hybrid membranes show an appealing catalytic activity in Friedel–Crafts alkylation in a batch mode as well as in a flow‐through mode, thereby demonstrating the preserved accessibility of Lewis acidic sites in the MOF nanostructures.

  相似文献   


16.
17.
18.
The hardness of oxo ions (O2?) means that coinage‐metal (Cu, Ag, Au) clusters supported by oxo ions (O2?) are rare. Herein, a novel μ4‐oxo supported all‐alkynyl‐protected silver(I)–copper(I) nanocluster [Ag74?xCuxO12(PhC≡C)50] ( NC‐1 , avg. x=37.9) is characterized. NC‐1 is the highest nuclearity silver–copper heterometallic cluster and contains an unprecedented twelve interstitial μ4‐oxo ions. The oxo ions originate from the reduction of nitrate ions by NaBH4. The oxo ions induce the hierarchical aggregation of CuI and AgI ions in the cluster, forming the unique regioselective distribution of two different metal ions. The anisotropic ligand coverage on the surface is caused by the jigsaw‐puzzle‐like cluster packing incorporating rare intermolecular C?H???metal agostic interactions and solvent molecules. This work not only reveals a new category of high‐nuclearity coinage‐metal clusters but shows the special clustering effect of oxo ions in the assembly of coinage‐metal clusters.  相似文献   

19.
Lithium makes the difference : A simple strategy for the synthesis of lithium‐doped porous metal–organic frameworks (MOFs) is developed (see structure; C black, O red, AlO6 blue octahedra), thus paving the way for the facile preparation of lithium‐doped MOFs. Moreover, the significant increase in hydrogen adsorption predicted by theoretical calculations is observed.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号