首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
The UV (λ>305 nm) photolysis of triazide 3 in 2‐methyl‐tetrahydrofuran glass at 7 K selectively produces triplet mononitrene 4 (g=2.003, DT=0.92 cm?1, ET=0 cm?1), quintet dinitrene 6 (g=2.003, DQ=0.204 cm?1, EQ=0.035 cm?1), and septet trinitrene 8 (g=2.003, DS=?0.0904 cm?1, ES=?0.0102 cm?1). After 45 min of irradiation, the major products are dinitrene 6 and trinitrene 8 in a ratio of ~1:2, respectively. These nitrenes are formed as mixtures of rotational isomers each of which has slightly different magnetic parameters D and E. The best agreement between the line‐shape spectral simulations and the experimental electron paramagnetic resonance (EPR) spectrum is obtained with the line‐broadening parameters Γ(EQ)=180 MHz for dinitrene 6 and Γ(ES)=330 MHz for trinitrene 8 . According to these line‐broadening parameters, the variations of the angles Θ in rotational isomers of 6 and 8 are expected to be about ±1 and ±3°, respectively. Theoretical estimations of the magnetic parameters obtained from PBE/DZ(COSMO)//UB3LYP/6‐311+G(d,p) calculations overestimate the E and D values by 1 and 8 %, respectively. Despite the large distances between the nitrene units and the extended π systems, the zero field splitting (zfs) parameters D are found to be close to those in quintet dinitrenes and septet trinitrenes, where the nitrene centers are attached to the same aryl ring. The large D values of branched septet nitrenes are due to strong negative one‐center spin–spin interactions in combination with weak positive two‐center spin–spin interactions, as predicted by theoretical considerations.  相似文献   

11.
Deposition of hole injection layers including a perfluorinated ionomer has been demonstrated using layer‐by‐layer spin self‐assembly for enhanced device efficiency and lifetime in PLEDs. We show that the LBL spin self‐assembled thin films enable to control work functions of indium‐tin oxide anodes by changing the PFI concentration and that a resulting green‐emitting device has an enhanced luminescence efficiency and 18 times longer half lifetime than a device using a conventional HIL. We also fabricate a gradient of energy levels by the LBL self‐assembly of the PFI that results in a work function of 5.74 eV, which can be used to improve carrier injection even for an emitting layer whose ionization potential is over 5.7 eV.

  相似文献   


12.
13.
Parahydrogen induced polarization was employed to prepare a relatively long‐lived correlated nuclear spin state between methylene and methyl protons in propane gas. Conventionally, such states are converted into a strong NMR signal enhancement by transferring the reaction product to a high magnetic field in an adiabatic longitudinal transport after dissociation engenders net alignment (ALTADENA) experiment. However, the relaxation time T1 of ~0.6 s of the resulting hyperpolarized propane is too short for potential biomedical applications. The presented alternative approach employs low‐field MRI to preserve the initial correlated state with a much longer decay time TLLSS=(4.7±0.5) s. While the direct detection at low‐magnetic fields (e.g. 0.0475 T) is challenging, we demonstrate here that spin‐lock induced crossing (SLIC) at this low magnetic field transforms the long‐lived correlated state into an observable nuclear magnetization suitable for MRI with sub‐millimeter and sub‐second spatial and temporal resolution, respectively. Propane is a non‐toxic gas, and therefore, these results potentially enable low‐cost high‐resolution high‐speed MRI of gases for functional imaging of lungs and other applications.  相似文献   

14.
15.
The development of ESR methods that measure long‐range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein‐backbone structure. Herein we present the double‐histidine (dHis) Cu2+‐binding motif as a rigid spin probe for double electron–electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X‐ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 Å of the experimental value. Cu2+ DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein‐backbone structure and flexibility.  相似文献   

16.
X‐ray absorption near the iron K edge (XANES) was used to investigate the characteristics of temperature‐induced low‐spin‐to‐high‐spin change (SC) in metallo‐supramolecular polyelectrolyte amphiphile complexes (PAC) containing FeN6 octahedra attached to two or six amphiphilic molecules. Compared to the typical spin‐crossover material Fe(phen)2(NCS)2 XANES spectra of PAC show fingerprint features restricted to the near‐edge region which mainly measures multiple scattering (MS) events. The changes of the XANES profiles during SC are thus attributed to the structure changes due to different MS path lengths. Our results can be interpreted by a uniaxial deformation of FeN6 octahedra in PAC. This is in agreement with the prediction that SC is originated by a structural phase transition in the amphiphilic matrix of PAC, but in contrast to Fe(phen)2(NCS)2, showing the typical spin crossover being associated with shortening of all the metal–ligand distances.  相似文献   

17.
18.
Four new 1D spin‐Peierls‐type compounds, [D5]1‐(4′‐R‐benzyl)pyridinium bis(maleonitriledithiolato)nickelate ([D5]R‐Py; R=F, I, CH3, and NO2), were synthesized and characterized structurally and magnetically. These 1D compounds are isostructural with the corresponding non‐deuterated compounds, 1‐(4′‐R‐benzyl)pyridinium bis(maleonitriledithiolato)nickelate (R‐Py; R=F, I, CH3, and NO2). Compounds [D5]R‐Py and R‐Py (R=F, I, CH3, and NO2) crystallize in the monoclinic space group P21/c with uniform stacks of anions and cations in the high‐temperature phase and triclinic space group P$\bar 1$ with dimerized stacks of anions and cations in the low‐temperature phase. Similar to the non‐deuterated R‐Py compounds, a spin‐Peierls‐type transition occurs at a critical temperature for each [D5]R‐Py compound; the magnetic character of the 1D S=1/2 ferromagnetic chain for [D5]F‐Py and the 1D S=1/2 Heisenberg antiferromagnetic chain for others appear above the transition temperature. Spin‐gap magnetic behavior was observed for all of these compounds below the transition temperature. In comparison to the corresponding R‐Py compound, the cell volume is almost unchanged for [D5]F‐Py and shows slight expansion for [D5]R‐Py (R=I, CH3, and NO2) as well as an increase in the spin‐Peierls‐type transition temperature for all of these 1D compounds in the order of F>I≈CH3≈NO2. The large isotopic effect of nonmagnetic countercations on the spin‐Peierls‐type transition critical temperature, TC, can be attributed to the change in ω0 with isotope substitution.  相似文献   

19.
Two‐step magnetic transitions : An azide‐bridged 1D MnIII coordination polymer with a unique single end‐on mode was prepared; it displayed atypical antiferromagnetic couplings and field‐induced two‐step magnetic transitions (see figure). The spin‐canted phenomenon in the antiferromagnetic chain complex plays a pivotal role in establishing the slow magnetic relaxation.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号