首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用第一性原理的密度泛函理论研究单个氢原子和多个氢原子在Be(0001)表面吸附性质.给出了氢吸附Be(0001)薄膜表面的原子结构、吸附能、饱和度、功函数、偶极修正等特性参数.同时也讨论了相关吸附性质与氢原子覆盖度(0.06-1.33ML)的关系.计算结果表明:氢原子的吸附位置与覆盖度之间有强烈的依赖关系,覆盖度低于0.67ML时,氢原子能量上易于占据fcc或hcp的中空位置;覆盖度为0.78ML时,中空位与桥位为氢原子的最佳吸附位;覆盖度在0.89到1.00ML时,桥位是氢原子吸附能量最有利的位置;以上覆盖度中Be(0001)表面最外层铍原子的结构均没有发生明显变化.当覆盖度为1.11-1.33ML,高覆盖度下Be(0001)表面的最外层铍原子部分发生膨胀,近邻氢原子渗入到铍表面次层,氢原子易于占据在hcp和桥位.吸附结构中的氢原子比氢分子中的原子稳定.当覆盖度大1.33ML时,计算结果没有发现相对于氢分子更稳定的吸氢结构.同时从分析偶极修正和氢原子吸附垂直高度随覆盖度的变化关系判断氢覆盖度为1.33ML时,在Be(0001)表面吸附达到饱和.  相似文献   

2.
运用广义梯度密度泛函理论(Generalized Gradient Approximation,GGA)的PBE(Perdew-Burke-Ernzerh)方法结合周期性平板模型,研究了氯气分子和氯原子在CuCl(111)表面上的吸附。通过对不同吸附位和不同单层覆盖度下的吸附能和几何构型参数的计算和比较发现:氯气分子在CuCl(111)表面的吸附为解离吸附;单层覆盖度为0.50时的吸附构型为稳定的吸附构型;氯气分子平行吸附在CuCl(111)表面时最稳定,吸附能最大,达364.5 kJ·mol-1;伸缩振动频率的计算结果表明,吸附后的氯气分子的伸缩振动频率与自由氯气分子的伸缩振动频率相比,都发生了红移;布居分析结果表明整个吸附体系发生了由Cu原子向氯气分子的电荷转移。氯原子吸附的计算结果显示氯原子以穴位稳定的吸附在CuCl(111)表面。  相似文献   

3.
运用广义梯度密度泛函理论(GGA)的RPBE方法结合周期平板模型,在DNP基组下,研究了NO以N端和O端两种吸附取向在CuCl(111)表面上的吸附.通过对不同吸附位和不同覆盖度下的吸附能和几何构型参数的计算和比较发现:NO吸附在CuCl(111)表面Cu原子上的top位时为稳定的吸附;覆盖度为0.25 mL时吸附比较稳定;NO的N端吸附比O端吸附更有利,N端吸附时为化学吸附,O端吸附时为物理吸附.布居分析结果表明整个吸附体系发生了从Cu原子向NO分子的电荷转移,且O端吸附时电荷转移更多.N端吸附和O端吸附时,N-O键的伸缩振动频率均红移,同时O端吸附时红移更多.  相似文献   

4.
一氧化碳分子在Pt/t-ZrO2(101)表面的吸附性质   总被引:2,自引:0,他引:2  
运用广义梯度密度泛函理论(GGA-PW91)结合周期平板模型方法,研究了CO分子在完整与Pt负载的四方ZrO2(101)表面的吸附行为.结果表明:表面第二层第二氧位和表面第二桥位分别为CO分子和Pt原子在完整ZrO2(101)表面的稳定吸附位,且覆盖度为0.25ML(monolayer)时均为稳定吸附构型,吸附能分别为56.2和352.7kJ·mol-1.CO分子在负载表面的稳定吸附模式为C-end吸附,吸附能为323.8kJ·mol-1.考察了CO分子在负载表面吸附前后的振动频率、态密度和轨道电荷布居分析,并与CO分子和Pt原子在ZrO2表面的结果进行比较.结果表明,C端吸附CO分子键长为0.1161nm,与自由的和吸附在ZrO2表面后的CO相应值(0.1141和0.1136nm)相比伸长.吸附后C―O键伸缩振动频率为2018cm-1,与自由CO分子相比发生红移;吸附后CO带部分正电荷,电子转移以Pt5dCO2π的π反馈机理占主导地位.  相似文献   

5.
采用第一性原理方法和平板模型对CO分子在TiC(001)表面的吸附构型和电子结构进行了详细研究. 结果表明, CO分子倾向于采用C端吸附在表层Ti原子上方. 对于该吸附方式, 计算得到的吸附能、CO各电子态所处能级位置以及C—O键伸缩振动频率的红移值均与实验观测结果相吻合. 由能带结构和Mvlliken布居分析结果可知, 当采用C端吸附时, CO的5σ和2π鄢态受到底物影响最为显著, 尤其是C端的桥位吸附方式. 此外, 还进一步对底物表面态在CO吸附过程中的作用进行了探讨.  相似文献   

6.
NiO(001)表面吸附CO的从头算研究   总被引:1,自引:0,他引:1  
用量子化学B3LYP方法,以外加点电荷来封闭边界效应的簇为模型,计算了CO在NiO(001)面上不同吸附位置的吸附情况,并计算了振动频率。结果表明:1) CO的最佳吸附方式为C端垂直吸附在Ni位;2)吸附后CO间的振动频率蓝移13 cm-1;3)在O空缺、边和角等位置的吸附不如在完整表面的吸附稳定,这些均与实验结果一致。吸附后CO把主要起反键作用的C2s电子给予簇表面,使得吸附后CO键级加大,导致吸附后振动频率蓝移。并比较了Gaussian98 和Crystal98的计算结果,两者的结果能较好地符合。  相似文献   

7.
应用原子和表面簇合物相互作用的5参数Morse 势及由5参数Morse势组装推广的LEPS方法对H-W低指数表面吸附体系进行了研究, 并获得了全部临界点特性. 计算结果表明, 低覆盖度下, H原子优先吸附在W(100)面的内层吸附位二层桥位B', 获得156 meV的垂直振动频率, 随着覆盖度的增加, H原子稳定吸附在表层的五重洞位(二层顶位)、桥位及顶位. 内层吸附位的优先吸附, 对与其邻近的表面吸附位的临界点性质有一定影响. 在W(110)面上只存在三重洞位的稳定吸附态, 垂直振动频率为151 meV. 在W(111)面上存在三种稳定吸附态, 子表面吸附位H1, 桥位B'和顶位T, 分别获得104, 200, 259 meV的垂直振动频率. 在低覆盖度下, H原子优先吸附在子表面吸附位H1.  相似文献   

8.
吸附硫通常被认为是表面化学反应毒物,然而少量的硫能够增强铂的一氧化碳(CO)电氧化活性.本文利用常规电化学手段及表面增强拉曼光谱研究了CO在硫修饰的铂表面的电氧化.对于溶液中的CO,其在硫修饰铂电极上的起始氧化电位最多可以比非修饰电极负移超过300 mV,而且在硫覆盖度低于0.6的条件下电位负移量随覆盖度增加而增大.这一电催化活性的增强也受溶液pH值的影响.在低硫覆盖度(小于0.3)下,吸附态的CO电氧化峰值电位比非修饰铂电极负移约40 mV.然而,在高硫覆盖度下,其峰值电位比非修饰铂电极正移近30 mV.表面增强拉曼光谱显示共吸附硫使Pt—CO振动频率显著红移.作者认为这些结果是由于吸附硫弱化Pt—CO键及阻化CO在铂表面的移动引起的.  相似文献   

9.
本文依据偶极耦合理论和相干势近似方法,合理选择粗糙电极上吸附分子的频率分布函数、一氧化碳(CO)吸附层的结构参数以及偶极耦合作用常数,对13CO/12CO同位素取代过程记录的红外光谱进行了拟合.研究发现,只有在拟合过程中引入低频CO分子优先取代,就可成功地模拟整个同位素取代过程的红外光谱随表面吸附的13CO/12CO组分的变化,并由此提出了吸附驱动的脱附机理,COad的脱附不是热激发脱附,而是吸附到表面的CO分子为其邻近位置COad的脱附提供能量.伸缩振动频率较低的COad处于台阶或缺陷位等较开阔的位置(尽管其吸附能较高),周围有较大的空间,利于来自溶液的CO分子的吸附,因此在台阶或缺陷位优先发生同位素的取代.  相似文献   

10.
用密度泛函理论(DFT)研究了Cu(001)表面CO吸附单层的表面性质. 总能计算结果表明, 顶位结构总能最低, 相应位置的CO分子吸附能最大. 谷位吸附结构的衬底原子层间距相对于清洁表面的膨胀量约为10%, 从而导致了谷位吸附的不稳定性. 在顶位、桥位和谷位三个吸附结构中, C和Cu原子之间的距离dC-Cu分别为0.1868、0.1975和0.2231 nm, 对应的CO分子键长为0.1154、0.1165 和0.1175 nm. 计算了CO分子的态密度(DOS). 结果表明, 衬底与分子的作用主要是分子和金属轨道的杂化. 在吸附过程中, 电荷主要从碳原子的s轨道向p轨道转移. 在顶位、桥位和谷位吸附结构中, 每个碳原子内电荷的转移量分别为0.45e、0.54e 和0.55e. 衬底向吸附分子的电荷转移量不大, CO 吸附分子层为一绝缘层.  相似文献   

11.
运用广义梯度密度泛函理论的PW91方法结合周期平板模型,在DNP基组下研究了氧分子和氧原子在CuCl(111)表面上的吸附.对氧分子在CuCl(111)表面吸附的相关计算和比较发现,覆盖度为0.25单层时的吸附构型为稳定的吸附构型,氧分子倾斜地吸附在CuCl(111)表面的顶位时比较稳定,吸附后O2分子的伸缩振动频率与自由O2分子相比发生了红移.态密度和Mulliken电荷布居分析结果表明,整个吸附体系发生了由Cu原子向O2分子的电荷转移.氧原子在CuCl(111)表面吸附的计算结果表明,氧原子倾向于以穴位(hollow)吸附在CuCl(111)表面,通过Mulliken电荷布居和态密度分析对氧原子在CuCl表面的吸附行为作了进一步探讨.  相似文献   

12.
一氧化碳共吸附法确定叔丁胺分子在Cu(111)表面的吸附位   总被引:1,自引:0,他引:1  
采用扫描隧道显微镜(STM)和密度泛函理论(DFT)研究了78 K时单个叔丁胺分子在Cu(111)表面的吸附位. 我们提出以共吸附的一氧化碳√3 ×√3 超结构为基底铜原子的标识方法, 确定了低覆盖度的叔丁胺分子在Cu(111)表面的吸附位为顶位. 而采用单个一氧化碳分子标识基底铜原子的位置, 同样得出了叔丁胺分子的吸附位为顶位. 此外, 还采用DFT计算叔丁胺分子在Cu(111)表面的优势吸附构型. 理论计算结果表明顶位吸附构型为能量最稳定的构型, 与实验结果相吻合.  相似文献   

13.
甲硫醇在Au(111)表面不同覆盖度下吸附的第一性原理研究   总被引:1,自引:0,他引:1  
采用第一性原理方法研究了五种覆盖度下甲硫醇在Au(111)面的吸附构型和吸附能. 分别对于S-H解离前CH3SH和S-H解离后CH3S, 计算其在不同覆盖度下的吸附结构和能量. 结果显示各种覆盖度下CH3SH都优先吸附于top位, 倾斜角为70°±2°, 在低覆盖度(1/12, 1/9, 1/8)下的吸附能最大, 为0.33~0.35 eV; 而CH3S在各种覆盖度下稳定吸附于bri-fcc位, 倾斜角为48.3°~58.5°, 低覆盖度下的吸附能为2.08 eV. 对于CH3SH和CH3S的吸附, 吸附能均随覆盖度的增大而减小. 重点研究了范德华力对高覆盖度吸附的影响. 在覆盖度为1/3时, 采用DFT-D2方法, 分别计算了CH3SH和CH3S的吸附, 结果显示范德华力使吸附物和Au表面的距离减小, 同时使CH3SH和CH3S的吸附能分别增大为0.59 eV和2.27 eV. DFT-D2方法修正使CH3SH的结果更接近实验结论, 但使CH3S的结果偏离实验值.  相似文献   

14.
CO2二聚体分子弱结合作用的DFT计算   总被引:4,自引:0,他引:4  
用密度泛函理论(DFT)的Becke 3LYP方法,在不同基集合(6 31G和6 311G系列)下对平行结构(C 2h)和T形结构(C2v)的CO2二聚体进行ab initio计算.通过计算,得到了CO2二聚体C2h和C2v两种构型的结构参数和离解能,并给出了CO2二聚体相对稳定构型C2h的12个正则振动分析图.结果表明,CO2二聚体的离解能为2 kJ•mol-1,CO2分子之间振动频率很小,从而说明CO2二聚体是弱结合分子.  相似文献   

15.
董虹志 《分子催化》2012,26(6):554-559
通过密度泛函理论的第一性原理,模拟了CO2分子在SrTiO3(100)表面TiO2-和SrO-位点上的吸附行为,获得了CO2在几种不同吸附模型下的结构参数及表面吸附能,进而研究了吸附机理和结构稳定性.计算结果表明,当CO2的C原子吸附在SrTiO3(100)表面SrO-及TiO2-位点的氧原子上时,吸附结构较稳定,尤其是C、O原子共吸附在TiO2-位点时最稳定,而其余吸附模型则不稳定.对吸附稳定模型的Mulliken布局数及态密度分析显示:CO2分子在SrTiO3(100)表面吸附主要是由于SrTiO3(100)面的电子跃迁至CO2分子,CO2分子得到电子形成弯曲的CO2-阴离子结构,并伴随着C-O键的伸长,从而达到吸附活化CO2的目的.  相似文献   

16.
采用密度泛函理论(DFT)的B3LYP方法,以原子簇Ru15为模拟表面,对甲醇在理想的Ru(0001)面三种吸附位置(top,fcc,hcp)的吸附模型进行了几何构型优化,能量计算,Mu lliken布局分析以及振动频率计算,结果表明顶位为最有利的吸附位.这些变化与实验观察到的甲醇在过渡金属表面解离的结果相一致.同时通过对吸附过程的分析推测其可能的解离途径.  相似文献   

17.
采用密度泛函理论(DFT)和周期平板模型,研究两种WC(0001)表面的几何结构和表面能,并对Pt原子单层(PtML)在两种WC(0001)表面的高对称性吸附位上的吸附能和分离功进行计算.结果发现,终止于W原子的WC(0001)为最稳定的WC(0001)表面,Pt原子单层以hcp位的方式吸附于W终止的WC(0001)表面是PtML/WC(0001)体系最稳定的几何构型.在此基础上研究了CO分子和H原子分别在PtML/WC(0001)表面和具有相似表面结构的Pt(111)表面的吸附行为.在0.25 ML(monolayer)低覆盖度下,与在Pt(111)表面相比,在PtML/WC(0001)表面上的Pt—C间距明显拉长和CO分子吸附能减少,说明PtML/WC(0001)表面抗CO中毒能力比Pt(111)表面高;态密度分析进一步解释了CO分子与不同表面Pt原子的成键机理.在同一覆盖度下,H原子在PtML/WC(0001)表面的最大吸附能等于甚至略高于在Pt(111)表面的,表明Pt/WC对氢气氧化反应具有良好的催化活性,是一种很有前途的质子交换膜燃料电池(PEMFC)阳极催化剂.  相似文献   

18.
运用广义梯度近似密度泛函理论方法(GGA-PW91)结合周期平板模型, 研究水分子在二氧化铪(111)和(110)表面不同吸附位置在不同覆盖度下的吸附行为. 通过比较不同吸附位的吸附能和几何构型参数发现:(111)和(110)表面铪原子(top 位)是活性吸附位. 水分子与表面的吸附能值随覆盖度的变化影响较小. 在(111)和(110)表面, 水分子都倾向以氧端与表面铪原子相互作用. 同时也计算了羟基、氧和氢在表面的吸附, Mulliken 电荷布居, 态密度及部分频率. 结果表明, 在两种表面羟基以氧端与表面铪相互作用, 氧原子与表面铪和氧原子同时成键, 而氢原子直接与表面氧原子相互作用形成羟基. 通过过渡态搜索, 水分子在(111)和(110)表面发生解离, 反应能垒分别为9.7和17.3 kJ·mol-1, 且放热为59.9和47.6 kJ·mol-1.  相似文献   

19.
采用基于密度泛函理论(DFT)的广义梯度近似(GGA)/PBE(Perdew-Burke-Ernzerhof)交换相关泛函和双数值基加p极化(DNP)基组对氢气分子在Na-MAZ和Li-MAZ沸石原子簇上的吸附进行了研究, 计算得到吸附复合物的平衡几何结构参数、振动频率以及吸附能等数据. 结果表明: MAZ沸石中存在四个稳定的吸附位点, 分别为SI′、SI″、SII′和SII″位点; 氢气分子在Na-MAZ沸石的SII″位点吸附时最稳定, 而在Li-MAZ沸石中, 氢气分子处于SI″和SII″位点时最稳定. 吸附能越大, 氢气分子键长越长, 振动频率减少也越多. Li-MAZ沸石对氢气的吸附能力要明显强于Na-MAZ沸石的吸附能力, 理论上Li-MAZ沸石具有更高的氢气储量, 可能是一种潜在的储氢材料.  相似文献   

20.
采用密度泛函理论(DFT)研究了NOx/CO2/H2O在BaO(001)表面不同覆盖度下的吸附情况.计算表明NO以N端吸附在表面氧位,形成NO22-吸附物种;CO2以C端吸附在表面氧位,形成表面CO32-;而H2O在表面发生解离吸附,导致BaO表面的羟基化.NO2有两种主要的吸附模式:以N端吸附在表面氧位,或以O端吸附表面Ba位.各物种在表面的吸附顺序为:NO≈H2O相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号