首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 405 毫秒
1.
2.
The screening capability of micellar liquid chromatography (MLC) is discussed using the reported chromatographic data of several sets of compounds (amino acids, beta-blockers, diuretics, phenethylamines, phenols, polynuclear aromatic hydrocarbons, steroids and sulfonamides) and new results (sulfonamides and steroids). The chromatographic data are treated with an interpretive optimisation resolution procedure to obtain the best separation conditions. Usually, the pH and the concentration of surfactant (sodium dodecyl sulfate, SDS, or cetyltrimethylammonium bromide) for the optimal mobile phase were 2.5-3 and < 0.12 M, respectively. The nature and concentration of organic solvent depended on the polarity of the eluted compounds: a low volume fraction of propanol (approximately 1%, v/v) was useful to separate the amino acids, with log P(o/w) < -1 (where P(o/w) is the octanol-water partition coefficient). A greater concentration of this solvent (approximately 5-7%) was needed for compounds in the range -1 < log P(o/w) < 2, as with the studied diuretics and sulfonamides, and a high concentration of propanol (approximately 15%) or a low concentration of butanol (< 10%) had to be used for less polar compounds with 1 < log P(o/w) < 3, such as the beta-blockers. Pentanol (< 6%) was more suitable for the even less polar compounds with log P(o/w) > 3, such as the steroids. For basic drugs such as the phenethylamines (0 < log P(o/w) < 1.7), eluted with a micellar eluent of anionic SDS, propanol was too weak. A study is also shown for mixtures of sulfonamides (log P(o/w) = -1.2 to 1.7) and steroids (log P(o/w) = 3.0-8.1) eluted from conventional C18 columns with SDS mobile phases containing acetonitrile and 1-pentanol, respectively, which are compared with classical acetonitrile-water and methanol-water mixtures. The results complement a previous study on beta-blockers (log P(o/w) = -0.03 to 2.8) and reveal that MLC is a very competitive technique for the screening of compounds against conventional RPLC, due to its peculiar behaviour with regard to the selectivity and elution strength. The concentration of organic solvent needed to obtain sufficiently low retention times (even for highly hydrophobic steroids with log P(o/w) = 7-8) is also appreciably smaller for MLC, which reduces the environmental impact of the mobile phases.  相似文献   

3.
The retention behavior of newly synthesized compounds with antimycotic activity from the 2-(2,4-dihydroxyphenyl)benzothiazole group by high-performance liquid chromatography has been investigated. RP-18 stationary phase and methanol-acetate buffer aqueous mobile phases at pH 4 and 7.4 have been used. In the case of the mobile phase at pH 7.4, higher concentrations of water can be applied than at pH 4. The studied compounds showed regular retention behavior, their log k values decreasing linearly with an increasing concentration of methanol in the mobile phase. On the basis of these relationships, the lipophilicity (log kw), specific hydrophobic surface area (S), and isocratic chromatographic hydrophobicity index (psi0) were determined. Similar log kw values and sensitivity to changes in the structure of compounds studied for both mobile phases have been found. Moderate correlations between the chromatographic parameters and the calculated octanol-water log P values were found. Finally, the lipophilicity parameters were compared with the fungistatic properties of compounds expressed by log MIC (minimum inhibitory concentration) values to find quantitative structure activity relationship equations.  相似文献   

4.
An RPLC was developed to rapidly determine lipophilicity of neutral and basic compounds using three base deactivated RPLC stationary phases particularly designed for the analysis of basic compounds, namely, Supelcosil ABZ(+)Plus, Discovery RP Amide C16, and Zorbax Extend C18. The work consisted of three sets of experiments. In the first log kw values of neutral compounds were extrapolated using hydroorganic mobile phases at different compositions. Good correlation between log kw and log Poct indicated that the method was appropriate for these supports, without adding a silanol masking agent. In the second set of experiments, isocratic log k values of neutral and basic compounds were measured with three different mobile phases. The best estimation of lipophilicity was obtained for neutral and basic compounds when the secondary interactions were strongly reduced (i. e., when basic compounds were under their neutral form). In the third set of experiments, isocratic retention factors of basic compounds (in their neutral form) were measured with a high-pH mobile phase, on a chemically stable support (Zorbax Extend C18). Under these chromatographic conditions, correlation between the isocratic retention factors and log Poct (log D10.5) for basic compounds was similar to that for neutral compounds.  相似文献   

5.
Use of micellar mobile phases in reversed-phase liquid chromatography (RPLC) results in hydrophobic and electrostatic sites for interaction. Modified stationary phases in micellar liquid chromatography (MLC) are structurally similar to biomembranes. To confirm this we focused on the effects of the type and concentration of surfactant (Brij 35, SDS, and CTAB) and mobile phase pH on the retention of antihypertensive drugs on modified C18 stationary phases. Quantitative retention-activity relationships are proposed for the drugs and the different surfactants and compared with those obtained using aqueous–organic mobile phases. Finally, a correlation was obtained between the logarithm of retention factors (log k) and the toxicity (LD50) of antihypertensive drugs. Revised: 14 September 2005 and 4 April 2006  相似文献   

6.
The objectives of this study were to establish guidelines for the proper measurement of capacity factors (log k(IAMw) on immobilized artificial membrane (IAM) stationary phases. In this context, some aspects related to the extrapolation of log(kIAMw) values, the stability and properties of IAM.PC.DD2 stationary phases and the column-to-column variability are discussed. No significant difference was observed when using either acetonitrile or methanol for the linear extrapolation of log k(IAM) values. However, methanol seems more appropriate when working with ionized compounds. Plotting isocratic capacity factors against the percentage (v/v) of co-solvent instead of the mole fraction leads to more reliable log k(AMW) values. Furthermore, our results with a YMC ODS-AQ and an IAM.PC.DD2 HPLC column indicate that only small differences arise between extrapolated capacity factors when using the (w(w))pH or the (s(w))pH operational scale and correcting or not the ionic strength for dilution caused by the co-solvent. The use of the (s(w))pH scale is recommended when working with ionized compounds in order to avoid parabolic relationships during linear extrapolation. The pH-dependent retention of three ionizable drugs on an IAM.PC.DD2 phase showed that secondary interactions with the charged moieties of the chromatographic surface affect the retention of ionized compounds around physiological pH. Finally, it was shown that column ageing occurs also with IAM.PC.DD2 stationary phases and that it depends on the column as well as on the investigated analyte. The intra-batch variability for IAM.PC.DD2 phases was small, whereas a marked and solute-dependent batch-to-batch variability was apparent.  相似文献   

7.
Lipophilicity was evaluated using a novel RP-HPLC stationary phase (Discovery-RP-Amide-C16) with and without 1-octanol added to the mobile phase. A set of 46 drugs and flavonoids characterized by a broad structural diversity and a wide log Poct range (-0.69 to 5.70) was selected for this study. This set consists of neutral solutes and solutes with acidic or ampholytic functionalities which were maintained neutral at pH 2.5 or 4. In our conditions, the addition of 1-octanol in the mobile phase proved a key factor to derive a lipophilicity index log k(w) highly correlated with log Poct for all investigated solutes. 1-Octanol improved the correlation between log Poct and log k(w) mainly by influencing the retention behavior of the solutes with log Poct values below +3. This study brings additional evidence that under proper experimental conditions of stationary and mobile phases, RP-HPLC is a very useful method to obtain log Poct values.  相似文献   

8.
Oumada FZ  Rosés M  Bosch E 《Talanta》2000,53(3):667-677
A systematic study of the retention behaviour in a C(18) reversed phase liquid chromatography (RPLC) system of several inorganic salts, namely NaNO(2), NaNO(3), KBr, Bu(4)NBr and K(2)Cr(2)O(7), is presented. The behaviour of the markers in unbuffered mobile phases and the marker retention dependence on the pH and ionic strength of the buffered mobile phases have been analyzed. In addition, a comparison between the retention behaviour of the markers and several ionizable analytes in buffered eluents is presented.  相似文献   

9.
In this study two high-performance methods [overpressured layer chromatography (OPLC) and high-performance thin-layer chromatograpy (HPTLC) under reversed-phase conditions] are used to evaluate the hydrophobicity properties of newly synthesized bioactive compounds. The retention behavior of 24 2-(2,4-dihydroxyphenyl)benzothiazoles are examined for acquisition of log k data. With water-methanol mixtures as the mobile phases, the concentration range in which the correlation between log k and methanol content is linear is established for both methods and used to determine the hydrophobicity parameters of log kw by linear extrapolation. The effect of substituents on retention constants is quantitated by using the group contribution parameters (tauw). The results suggest the use of OPLC methods for quick analysis of physicochemical properties of a large number of organic compounds.  相似文献   

10.
A previously reported chromatographic method to determine the 1-octanol/water partition coefficient (log P(o/w)) of organic compounds is used to estimate the hydrophobicity of bases, mainly commercial drugs with diverse chemical nature and pK(a) values higher than 9. For that reason, mobile phases buffered at high pH to avoid the ionization of the solutes and three different columns (Phenomenex Gemini NX, Waters XTerra RP-18 and Waters XTerra MS C(18)) with appropriate alkaline-resistant stationary phases have been used. Non-ionizable substances studied in previous works were also included in the set of compounds to evaluate the consistency of the method. The results showed that all the columns provide good estimations of the log P(o/w) for most of the compounds included in this study. The Gemini NX column has been selected to calculate log P(o/w) values of the set of studied drugs, and really good correlations between the determined log P(o/w) values and those considered as reference were obtained, proving the ability of the procedure for the lipophilicity assessment of bioactive compounds with very different structures and functionalities.  相似文献   

11.
Sixteen beta-blocking agents (acebutolol, alprenolol, atenolol, bisoprolol, carteolol, celiprolol, esmolol, labetalol, metoprolol, nadolol, oxprenolol, pindolol, practolol, propranolol, sotalol and timolol) showing a large range of hydrophobicity (octanol-water partition coefficients, log P between -0.026 and 2.81) were subjected to micellar liquid chromatography with sodium dodecyl sulfate as micelle forming agent, and n-propanol as organic modifier. The correlation between log P and the retention factor extrapolated to a mobile phase free of micelles and organic modifier was investigated. The use of an interpolated retention factor or the retention factor for specific individual experimental mobile phases was however advantageous since the retention factors of all beta-blocking agents were measurable in the selected mobile phases. Good correlations with log P and with in vitro biological parameters (cellular permeability coefficients in Caco-2 monolayers and apparent permeability coefficients in rat intestinal segments) were found.  相似文献   

12.
Micellar liquid chromatography (MLC) is a reversed-phase liquid chromatographic (RPLC) mode with mobile phases containing a surfactant (ionic or non-ionic) above its critical micellar concentration (CMC). In these conditions, the stationary phase is modified with an approximately constant amount of surfactant monomers, and the solubilising capability of the mobile phase is altered by the presence of micelles, giving rise to diverse interactions (hydrophobic, ionic and steric) with major implications in retention and selectivity. From its beginnings in 1980, the technique has evolved up to becoming a real alternative in some instances (and a complement in others) to classical RPLC with hydro-organic mixtures, owing to its peculiar features and unique advantages. This review is aimed to describe the retention mechanisms (i.e. solute interactions with both stationary and mobile phases) in an MLC system, revealed in diverse reports where the retention behaviour of solutes of different nature (ionic or neutral exhibiting a wide range of polarities) has been studied in a variety of conditions (with ionic and non-ionic surfactants, added salt and organic solvent, and varying pH). The theory is supported by several mechanistic models that describe satisfactorily the retention behaviour, and allow the measurement of the strength of solute-stationary phase and solute-micelle interactions. Suppression of silanol activity, steric effects in the packing pores, anti-binding behaviour, retention of ionisable compounds, compensating effect on polarity differences among solutes, and the contribution of the solvation parameter model to elucidate the interactions in MLC, are commented.  相似文献   

13.
A series of 11 homemade octadecyl bonded phases with different coverage densities were tested to determine the influence of the stationary phase on the retention in highly aqueous mobile phases. The concentrations of the organic modifiers (methanol and ACN) were in the range of 0–20%v/v. The coverage density of bonded ligands and the presence of the end‐capping have strong influence on the solute retention. Amoxicillin (AMO) was chosen as the test compound. Dual properties of AMO, which contain hydrophobic skeleton and polar groups (amino, hydroxyl and carbonyl), cause irregular changes of the retention over the stationary phase hydrophobicity and silanol activity at given mobile phase composition. Presented data show that application of non‐standard low coverage density C18 phases allow to determine AMO in the RPLC condition with high retention.  相似文献   

14.
Abstract

Reversed-phase 1 iquid chromatography (RPLC) is widely recognized as a valuable technique for the separation of compounds of varying 1 ipophil ic/hydrophobic nature. RPLC on hydrocarbon stationary phases has been used for the separation of homologues of various compound classes with outstanding success (1–3). Excellent correlations have been obtained between RPLC capacity factors and various parameters of the solvophobic theory (4–6). This theory suggests that solute-solvent interactions assume the primary role in the RPLC retention process (7–9). The creation of a suitable cavity in the mobile phase is a key factor affecting the retention of the solute. The size and shape of the cavity formed in the solvent depends on solute molecular volume and hydrophobic surface area as well as the dielective constant and surface tension of the solvent. Relationships between RPLC capacity factors, partition coefficients (10,ll) and biological activities (12) have been reported. These high correlations suggest RPLC can be a very useful tool for the study of molecular phenomena in solution.  相似文献   

15.
The octanol-water partition coefficients (Poct) of 17 antiadrenergic beta-blocker compounds were determined by counter-current chromatography (CCC). Since CCC uses a biphasic liquid system, the octanol-water liquid system was used with essentially an octanol stationary phase and aqueous buffer mobile phase. The Poct coefficients were obtained directly without any extrapolation. The measured Poct values were in the 0.0015-4070 range (-2.8 < log Poct < 3.6). Since the beta-blocking agents are ionizable compounds, the Poct values obtained were strongly dependent on the aqueous-phase pH. The apparent Poct coefficients of the beta-blockers were determined at three different pH values (approximately 3, 7 and 11) using 0.01 M ammonium phosphate buffers saturated with octanol. A model allowed us to obtain the molecular and ionic Poct value using the solute pKa with these three experimental octanol-water coefficients. Often, the Poct coefficients of the molecular forms obtained with the CCC method differ significantly from computed literature values and/or experimental values obtained by extrapolation. Relationships between biological properties and hydrophobicity were also examined.  相似文献   

16.
We propose a general simple equation for accurately predicting the retention factors of ionizable compounds upon simultaneous changes in mobile phase pH and column temperature at a given hydroorganic solvent composition. Only four independent experiments provide the input data: retention factors measured in two pH buffered mobile phases at extreme acidic and basic pH values (e. g., at least +/- 2 pH units far from the analyte pK(a)) and at two column temperatures. The equations, derived from the basic thermodynamics of the acid-base equilibria, additionally require the knowledge of the solute pK(a )and enthalpies of acid-base dissociation of both the solute and the buffer components in the hydroorganic solvent mixture. The performance of the predictive model is corroborated with the comparison between theoretical and experimental retention factors of several weak acids and bases of important pharmacological activity, in mobile phases containing different buffer solutions prepared in 25% w/w ACN in water and at several temperatures.  相似文献   

17.
18.
19.
The simultaneous isocratic separation of a mixture of five phenolic acids and four flavonoids (two important groups of natural polyphenolic compounds with very different polarities) was investigated in three different RPLC modes using a hydro‐organic mobile phase, and mobile phases containing SDS at concentrations below and above the critical micellar concentration (submicellar LC and micellar LC (MLC), respectively). In the hydro‐organic mode, methanol and acetonitrile; in the submicellar mode methanol; and in the micellar mode, methanol and 1‐propanol were examined individually as organic modifiers. Regarding the other modes, MLC provided more appropriate resolutions and analysis time and was preferred for the separation of the selected compounds. Optimization of separation in MLC was performed using an interpretative approach for each alcohol. In this way, the retention of phenolic acids and flavonoids were modeled using the retention factors obtained from five different mobile phases, then the Pareto optimality method was applied to find the best compatibility between analysis time and quality of separation. The results of this study showed some promising advantages of MLC for the simultaneous separation of phenolic acids and flavonoids, including low consumption of organic solvent, good resolution, short analysis time, and no requirement of gradient elution.  相似文献   

20.
白泉  耿信笃 《色谱》2000,18(3):189-193
 依据液相色谱中溶质计量置换保留模型及线性参数logI(与1mol溶质对固定相的亲和势大小有关的常数),通过作图得知非极性和极性小分子溶质及生物大分子的logI与绝对温度的倒数1/T,以及小分子溶质的logI与其在正辛醇-水中分配系数的对数logPo/w呈线性关系,从两方面进一步证明了logI具有热力学平衡常数的性质。基于小分子溶质、生物大分子的logI和分配系数大小的差别,对两者在反相液相色谱中的保留对柱长的依赖关系给予了定量的说明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号