首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photophysical and linear and nonlinear spectral properties of octupolar compounds with a triphenylbenzene core are investigated and compared with properties of corresponding dipolar branches. A correlation is found between the solvatochromic behavior and the two-photon absorption cross section. Moreover, the nature of the core is found to be responsible for the nature of the coupling between branches; in the studied case only (weak) electrostatic interactions are effective, while other cores, like the triphenylamine moiety, are able to promote coherent coupling between the branches, leading to strongly nonadditive properties.  相似文献   

2.
3.
The crystals of [C(5)NH(6)](+)[AuCl(4)](-), [C(5)NH(6)](+)[AuBr(4)](-), and [C(5)NH(6)](+)[AuI(4)](-) have been studied by single-crystal X-ray diffraction and dielectric spectroscopy. The structures of the chloride and bromide are isosymmetric, with the monoclinic space group C2/m, and both are built of sheets of pyridinium cations and tetrahalogenoaurate anions alternately arranged in the direction [001]. The anomalous thermal expansion and dielectric response characteristic of dipolar glass formation observed in these compounds have been interpreted in terms of the development of the short-range dipolar order and the competition between the ferroelectric and antiferroelectric interactions. The frustration of dipolar interactions, leading to glassy behavior, results from the strongly anisotropic properties of the layered crystal structure. These features have not been observed for [C(5)NH(6)](+)[AuI(4)](-), which crystallizes in the space group P2(1)/c and exhibits a nonlayered structural packing because of the larger size of the anion.  相似文献   

4.
A homologous series of bis-diphenylphosphine oxides (C6H5)2PO(CH2)(n)PO(C6H5)2 (with n = 2-8; denoted 2-8] have been investigated to explore the effects of a range of competing and cooperative intermolecular and intramolecular interactions on the structural properties in the solid state. The important factors influencing the structural properties include intramolecular aspects such as the conformation of the aliphatic chain and the intramolecular interaction between the two P=O dipoles in the molecule, and intermolecular aspects such as long-range electrostatic interactions (dominated by the arrangement of the P=O dipoles), C-H...O interactions, C-H...pi interactions and pi...pi interactions. Compounds 3 and 5 could be crystallized only as solvate co-crystals (3 water and 5 x (toluene)2], whereas the crystal structures of all the other compounds contain only the bis-diphenylphosphine oxide molecule. The crystal structures have been determined from single-crystal X-ray diffraction data, with the exception of 7 (which has been determined here from powder X-ray diffraction data) and 4 (which was known previously). The compounds with even n represent a systematic structural series, exhibiting characteristic, essentially linear P=O...P=O...P=O dipolar arrays, together with C-H...O and C-H...pi interactions. For the compounds with odd n, on the other hand, uniform structural behaviour is not observed across the series, although certain aspects of these crystal structures contribute in a general sense to our understanding of the structural properties of bis-diphenylphosphine oxides. Importantly, for the compounds with odd n, there is "frustration" with regard to the molecular conformation, as the preferred all-anti conformation of the aliphatic chain gives rise to an unfavourable parallel alignment of the two P=O dipoles within the molecule. Clearly the importance of avoiding a parallel alignment of the P=O dipoles becomes greater as n decreases. Local structural aspects (investigated by high-resolution solid-state 31P NMR spectroscopy) and thermal properties of the bis-diphenylphosphine oxide materials are also reported.  相似文献   

5.
A series of dilute liquid crystalline solvents are used to study the effect of slight anisotropy caused by partial alignment on chemical shift and residual dipolar coupling (RDC) in small molecules. The residual dipolar couplings between protons in solutes are found to be almost independent of the local environment. It is also found that the chemical shift does not change over the concentration range observed. A linear relationship between residual dipolar coupling and liquid crystal concentration is observed at relatively low concentrations, but is severely violated at high concentrations.  相似文献   

6.
Acidic proteins found in mineralized tissues act as nature's crystal engineers, where they play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), Ca10(PO4)6(OH)2, the main mineral component of bone and teeth. Key to understanding the structural basis of protein-crystal recognition and protein control of hard tissue growth is the nature of interactions between the protein side chains and the crystal surface. In an earlier work we have measured the proximity of the lysine (K6) side chain in an SN-15 peptide fragment of the salivary protein statherin adsorbed to the Phosphorus-rich surface of HAP using solid-state NMR recoupling experiments. 15N{31P} rotational echo double resonance (REDOR) NMR data on the side-chain nitrogen in K6 gave rise to three different models of protein-surface interaction to explain the experimental data acquired. In this work we extend the analysis of the REDOR data by examining the contribution of interactions between surface phosphorus atoms to the observed 15N REDOR decay. We performed 31P-31P recoupling experiments in HAP and (NH4)2HPO4 (DHP) to explore the nature of dipolar coupled 31P spin networks. These studies indicate that extensive networks of dipolar coupled 31P spins can be represented as stronger effective dipolar couplings, the existence of which must be included in the analysis of REDOR data. We carried out 15N{31P} REDOR in the case of DHP to determine how the size of the dephasing spin network influences the interpretation of the REDOR data. Although use of an extended 31P coupled spin network simulates the REDOR data well, a simplified 31P dephasing system composed of two spins with a larger dipolar coupling also simulates the REDOR data and only perturbs the heteronuclear couplings very slightly. The 31P-31P dipolar couplings between phosphorus nuclei in HAP can be replaced by an effective dipolar interaction of 600 Hz between two 31P spins. We incorporated this coupling and applied the above approach to reanalyze the 15N{31P} REDOR of the lysine side chain approaching the HAP surface and have refined the binding models proposed earlier. We obtain 15N-31P distances between 3.3 and 5 A from these models that are indicative of the possibility of a lysine-phosphate hydrogen bond.  相似文献   

7.
The orientational order of a liquid crystalline phase which has a specific solute-liquid crystal interaction was investigated using nuclear magnetic resonance. Three isotopically substituted species of palmitic acid (palmitic acid-d31, 1-13C-2.2-H2-palmitic acid-d29 and 2,2,3,3-H4-palmitic acid-d27) were dissolved in the liquid crystal p-octyloxybenzoic acid (p-OOBA) and the proton, deuteron and carbon 13 NMR spectra recorded as a function of temperature. 1H-13H dipolar couplings were observed using a spin echo pulse sequence which removes heteronuclear dipolar couplings to the chain deuterons. In the case of the carbon 13 labelled compound, 1H-13C dipolar couplings could be observed by applying an additional refocusing pulse to the 13C spins. The dipolar and quadrupolar couplings were used to calculate the complete orientational order matrix of the alpha methylene segment of palmitic acid in p-OOBA. The liquid crystal was shown to largely determine the orientational order of the head group and this was attributed to intermolecular hydrogen bonding. The dipolar and quadrupolar couplings for the rest of the chain were interpreted in terms of a mean field equilibrium statistical model, based on the Samulski Inertial Frame Model. Hydrogen bonding was shown to be of greater importance in the orientational ordering of the solutes in the liquid crystal than are electrostatic interactions in the ordering of the amphiphile in the potassium palmitate/water system.  相似文献   

8.
The past few decades of molecular recognition studies have greatly enhanced our knowledge on apolar, ion-dipole, and hydrogen-bonding interactions. However, much less attention has been given to the role that multipolar interactions, in particular those with orthogonal dipolar alignment, play in organizing a crystal lattice or stabilizing complexes involving biological receptors. By using results from database mining, this review attempts to give an overview of types and structural features of these previously rather overlooked interactions. A number of illustrative examples of these interactions found in X-ray crystal structures of small molecules and protein-ligand complexes demonstrate their propensity and thus potential importance for both, chemical and biological molecular recognition processes.  相似文献   

9.
A series of bioactive, triazole‐linked benzyl, aryl, sugar and aliphatic conjugates of 3‐ferrocenylidene‐oxindole have been synthesized. A facile 1,3‐dipolar‐Huisgen coupling reaction of the respective azides with the 3‐ferrocenylidene‐oxindole N‐propargyl moiety ( 3 ) gave the corresponding conjugates ( 5a–n ). All the newly synthesized compounds ( 5a–n ) were characterized by 1H‐NMR, 13C‐NMR, HRMS, Fourier transform‐infrared spectroscopy and elemental analysis. The UV–Vis and electrochemical studies of these compounds were performed in dimethylsulfoxide solutions. The structure of compound ( 3 ) was determined by single crystal X‐ray diffraction study. These compounds exhibited moderate to good antimicrobial activity against Gram‐positive and Gram‐negative strains.  相似文献   

10.
The nitrosyl in [IrCl5(NO)]- is probably the most electrophilic known to date. This fact is reflected by its extremely high IR frequency in the solid state, electrochemical behavior, and remarkable reactivity in solution. PPh4[IrCl5(NO)] forms a crystal in which the [IrCl5(NO)]- anions are in a curious wire-like linear arrangement, in which the distance between the N--O moiety of one anion and the trans chloride of the upper one nearby is only 2.8 A. For the same complex [IrCl5(NO)]- but with a different counterion, Na[IrCl5(NO)], the anions are stacked one over the other in a side-by-side arrangement. In this case the electronic distribution can be depicted as the closed-shell electronic structure Ir III-NO+, as expected for any d(6) third-row transition metal complex. However, in PPh4[IrCl5(NO)] an unprecedented electronic perturbation takes place, probably due to NO*-Cl- acceptor-donor interactions among a large number of [IrCl5(NO)]- units, favoring a different electronic distribution, namely the open-shell electronic structure Ir IV-NO*. This conclusion is based on XANES experimental evidence, which demonstrates that the formal oxidation state for iridium in PPh4[IrCl5(NO)] is +4, as compared with +3 in K[IrCl5(NO)]. In agreement, solid-state DFT calculations show that the ground state for [IrCl5(NO)]- in the PPh4+ salt comprises an open-shell singlet with an electronic structure which encompasses half of the spin density mainly localized on a metal-centered orbital, and the other half on an NO-based orbital. The electronic perturbation could be seen as an electron promotion from a metal-chloride to a metal-NO orbital, due to the small HOMO-LUMO gap in PPh4[IrCl5(NO)]. This is probably induced by electrostatic interactions acting as a result of the closeness and wire-like spatial arrangement of the Ir metal centers, imposed by lattice forces due to pi-pi stacking interactions among the phenyl rings in PPh4+. Experimental and theoretical data indicate that in PPh4[IrCl5(NO)] the Ir-N-O moiety is partially bent and tilted.  相似文献   

11.
Reactions of the in situ generated thiazoles 2 with aryl and alkyl isothiocyanates appear to be totally regioselective and give the unexpected 5‐(phenylthio)imidazolium‐4‐thiolates 3 . Such rapid interconversion of mesoionic compounds is explained by a 1,3‐dipolar addition to the C=N bond of the heterocumulene followed by tBuNCS elimination. Similar interactions with benzoyl isothiocyanate exclusively proceed on the C=S unsaturation of the heteroallene moiety and produce the 4‐(phenylthio)thiazolium‐5‐amidines 12 . Structural assignment of isolated imidazoles and thiazoles is based on 13C NMR data and chemically confirmed by the NaBH4 reduction of the alkylated derivatives 5 and 13 . Efforts to isomerize the starting mesoionic thiazole 2a without the use of tBuNCS are unsuccessful. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 10:16–26, 2000  相似文献   

12.
The dynamic behavior of two n-hexyl fluorenyl phases (fluorene-6A [3a(Tn)(Qm)y], fluorene-6B [3b(Tn)(Qm)y]) and three n-decyl fluorenyl phases (fluorene-10A [4a(Tn)(Qm)y], fluorene-10B [4b(Tn)(Qm)y], and fluorene-10C [4c(M1)(Qm)y]) is investigated by solid-state nuclear magnetic resonance (NMR) spectroscopy using the dipolar filter technique with both 13C and 1H detection. These results are compared with those from other dynamic measurements, like the relaxation times in the rotating frame (T1pH) and the variation of the contact time (T(CH)). Additionally, another type of a fluorenyl phase [5a(Tn)(Qm)y], which has an aromatic moiety connected to the silica gel by amido couplings, was also investigated by the dipolar filter method. The solid-state NMR dynamic measurements indicate an increased mobility of the n-alkyl fluorenyl phases compared to the amido coupled fluorenyl phase. The lower the ligand density of the studied n-alkyl fluorenyl phases, the higher their mobility. The separation behavior of the respective phases in high-performance liquid chromatography was investigated with samples containing polycyclic aromatic hydrocarbons and nitro explosives. Depending on the amount of the chemically bound aromatic moiety and the length of their n-alkyl spacer groups, pi-pi interactions with the solute molecules are involved in the separation process and cause it to proceed at a different rate. Therefore, n-alkyl fluorenyl phases can be classified as mixed-mode phases.  相似文献   

13.
Polynuclear single-molecule magnets (SMMs) were diluted in a diamagnetic crystal lattice to afford arrays of independent and iso-oriented magnetic units. Crystalline solid solutions of an Fe(4) SMM and its Ga(4) analogue were prepared with no metal scrambling for Fe(4) molar fractions x down to 0.01. According to high-frequency EPR and magnetic measurements, the guest SMM species have the same total spin (S=5), anisotropy, and high-temperature spin dynamics found in the pure Fe(4) phase. However, suppression of intermolecular magnetic interactions affects magnetic relaxation at low temperature (40 mK), where quantum tunneling (QT) of the magnetization dominates. When a magnetic field is applied along the easy magnetic axis, both pure and diluted (x=0.01) phases display pronounced steps at evenly spaced field values in their hysteresis loops due to resonant QT. The pure Fe(4) phase exhibits additional steps which are firmly ascribed to two-molecule QT transitions. Studies on the field-dependent relaxation rate showed that the zero-field resonance sharpens by a factor of five and shifts from about 8 mT to exactly zero field on dilution, in agreement with the calculated variation of dipolar interactions. The tunneling efficiency also changes significantly as a function of Fe(4) concentration: the zero-field resonance is significantly enhanced on dilution, while tunneling at ±0.45 T becomes less efficient. These changes were rationalized on the basis of a dipolar shuffling mechanism and transverse dipolar fields, whose effect was analyzed by using a multispin model. Our findings directly prove the impact of intermolecular magnetic couplings on SMM behavior and disclose the magnetic response of truly isolated giant spins in a diamagnetic crystalline environment.  相似文献   

14.
Summary.  Inclusion complexes of β-cyclodextrin with two steroid derivatives, progesterone (pregn-4-ene-3,20-dione) and hydrocortisone (11,17,21-trihydroxy-pregn-4-ene-3,20-dione), were studied in the liquid state by NMR spectroscopy. The complex formation process was monitored by intermolecular dipolar interactions between 1H signals in the hydrophobic β-cyclodextrin cavity (H-3 and H-5 of the α-glucose units) and the steroid moiety in ROESY spectra. The data revealed that progesterone is fully immersed in the β-cyclodextrin cavity; however, complete inclusion of the hydrocortisone molecule was prevented by the polar hydroxyl groups on its surface. Received April 26, 2001. Accepted (revised) May 18, 2001  相似文献   

15.
We have modified the polarization echo (PE) sequence through the incorporation of Lee-Goldburg cross polarization steps to quench the 1H-1H dipolar dynamics. In this way, the 13C becomes an ideal local probe to inject and detect polarization in the proton system. This improvement made possible the observation of the local polarization P(00)(t) and polarization echoes in the interphenyl proton of the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline. The decay of P(00)(t) was well fitted to an exponential law with a characteristic time tau(C) approximately 310 micros. The hierarchy of the intramolecular dipolar couplings determines a dynamical bottleneck that justifies the use of the Fermi Golden Rule to obtain a spectral density consistent with the structural parameters. The time evolution of P(00)(t) was reversed by the PE sequence generating echoes at the time expected by the scaling of the dipolar Hamiltonian. This indicates that the reversible 1H-1H dipolar interaction is the main contribution to the local polarization decrease and that the exponential decay for P(00)(t) does not imply irreversibility. The attenuation of the echoes follows a Gaussian law with a characteristic time tau(phi) approximately 527 micros. The shape and magnitude of the characteristic time of the PE decay suggest that it is dominated by the unperturbed homonuclear dipolar Hamiltonian. This means that tau(phi) is an intrinsic property of the dipolar coupled network and not of other degrees of freedom. In this case, one cannot unambiguously identify the mechanism that produces the decoherence of the dipolar order. This is because even weak interactions are able to break the fragile multiple coherences originated on the dipolar evolution, hindering its reversal. Other schemes to investigate these underlying mechanisms are proposed.  相似文献   

16.
In this report the mode of inhibition of mechanism-based inhibitor (2, K(i) = 0.4 microM) of 3-deoxy-d-manno-2-octulosonate-8-phosphate synthase (KDO8PS), which was designed to mimic the combined key features of its natural substrates arabinose-5-phosphate (A5P) and phoshoenolpyruvate (PEP) into a single molecule, was investigated. Our earlier solid-state NMR observations identified the inhibitor to bind in a way that partly mimics A5P, while the phosphonate moiety of its PEP-mimicking part exhibits no interactions with enzyme residues. This result was apparently in disagreement with the competitive inhibition of 2 against PEP and with the later solved crystal structure of KDO8PS-2 binary complex identifying the interactions of its PEP-mimicking part with the enzyme residues that were not detected by solid-state NMR. To solve this discrepancy, further solid-state REDOR NMR and (31)P solution NMR experiments were applied to a variety of enzyme complexes with the substrates and inhibitor. In particular, a novel frequency-selective REDOR experiment was developed and applied. Integration of the solution and solid-state NMR data clearly demonstrates that under conditions of stoichiometric enzyme-ligand ratio at thermodynamic equilibrium (a) PEP binding is unperturbed by the presence of 2 and (b) both PEP and 2 can bind simultaneously to the synthase, i.e., form a ternary complex with PEP occupying its own subsite and 2 occupying A5P's subsite. The latter observation suggests that under the conditions used in our NMR measurements, the inhibition pattern of 2 against PEP should have a mixed type character. Furthermore, the NMR data directly demonstrate the distinction between the relative binding strength of the two moieties of 2: enzyme interactions with PEP-mimicking moiety are much weaker than those with the A5P moiety. This observation is in agreement with KDO8PS-2 crystal structure showing only remote contacts of the phosphonate due to large structural changes of binding site residues. It is concluded that these phosphonate-enzyme interactions evidenced by both (31)P solution NMR and X-ray are too weak to be preserved under the lyophilization of KDO8PS-2 binary complex and therefore are not evidenced by the solid-state REDOR spectra.  相似文献   

17.
Two derivatives of N-Boc piperazine, an ester derivative, i.e., tert-butyl 4-(2-ethoxy-2-oxoethyl)-piperazine-1-carboxylate (1), and, a hydrazide derivative tert-butyl 4-(2-hydrazino-2-oxoethyl)piperazine-1-carboxylate (2) were synthesized and were characterized by FT-IR, 1H & 13C NMR and LCMS spectroscopic studies. The structures of both 1 and 2 were further confirmed by single crystal X-ray diffraction analysis. The molecule of 1 is linear in shape with the ethyl acetate moiety adopting fully extended conformation, while the molecule of 2 is L-shaped with the molecule being twisted at the C10 atom. The crystal structure of 1 adopts a two-dimensional zig-zag architecture featuring C–H…O intermolecular interactions, while that of 2 features strong N–H…O hydrogen bonds and intermolecular interactions of the type N–H…N and C–H…N, resulting in a two-dimensional structure. Furthermore, a detailed analysis of the intermolecular interactions and crystal packing of 1 and 2 via Hirshfeld surface analysis and fingerprint plots was performed. The antibacterial and antifungal activities of both the compounds have been studied against several microorganisms, and were found to be moderately active.  相似文献   

18.
Weak intermolecular forces like dipolar interactions and hydrogen-bonding lead to a variety of different packing arrangements of molecules in crystals and self-assemblies. Such differences in the arrangements change the extent of excitonic splitting and excitation spectra in the multichromophore aggregates. In this tutorial review, the role of such interactions in fine tuning the linear and 1st non-linear optical (NLO) responses in molecular aggregates are discussed. The non-additivity of these optical properties arise specifically due to such cooperative interactions. Calculations performed on dimers, trimers and higher aggregates for model systems provide insights into the interaction mechanisms and strategies to enhance the 1st hyperpolarizabilities of pi-conjugated molecular assemblies. Flexible dipole orientations in the alkane bridged chromophores show odd-even variations in their second-harmonic responses that are explained through their dipolar interactions in different conformations. Parameters for the optical applications of molecules arranged in constrained geometry, like in Calix[n]arene, have been elucidated. We also highlight the recent developments in this field of research together with their future prospects.  相似文献   

19.
The spectroscopic properties and crystal structures of a series of platinum(II) complexes bearing functionalized sigma-alkynyl groups, namely [(tBu(2)bpy)Pt(C triple bond CAr)(2)] (tBu(2)bpy = 4,4'-bis-tert-butyl-2,2'-bipyridine, Ar = 4-pyridyl, 1; 3-pyridyl, 2; 2-pyridyl, 3; 4-ethynylpyridyl, 4; 2-thienyl, 5; pentafluorophenyl, 6) have been studied. Solid-state emissions of 1 and 6 are dependent on their crystallinity. Reversible and selective vapoluminescence was observed for 1 and 6 in the presence of chlorocarbon vapors. For solid 1, dramatic enhancement of green luminescence is observed upon sorption of CH(2)Cl(2) or CHCl(3) vapor. The excimeric orange emission for solid 6 is switched to monomeric green emission upon exposure to CH(2)Cl(2) vapor. The luminescent responses of a thin film of 1 towards various organic vapors have also been examined. In the crystallographically determined structure of 1.CH(2)Cl(2), the bis(acetylide) moiety acts as the receptor berth for a CH(2)Cl(2) molecule through concerted C-H.pi(C triple bond C) interactions, while Cl.Cl interactions connect the CH(2)Cl(2) molecules into infinite linear chains. The observed crystal lattices are arranged into scaffolds of varying porosity by weak C-H...N(py) (1.CH(2)Cl(2), 1.CH(3)CN, 4.DMF) and C-H...F-C (6, 6.CH(3)CN) interactions. The correlation between the crystal structures of 1.CH(2)Cl(2), 1.CH(3)CN, 2, 4.DMF, 5, 6, and 6.CH(3)CN and their vapoluminescence suggests that weak nonconventional hydrogen-bonding interactions preside over the reversible sensing and signalling processes.  相似文献   

20.
1,3‐Dipolar cycloaddition of 3‐arylsydnones with α,β‐acetylenic ketones containing nitrofuran moiety has been studied, and it was observed that the dipolar cycloaddition is regiospecific, forming 1‐aryl‐3‐(5‐nitro‐2‐furyl)‐4‐aroylpyrazoles exclusively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号