首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Fourier-transform far-infrared spectra of CH318OH in the 15-470 cm−1 region have been analyzed by means of the Ritz assignment program. The far-infrared data have been combined with the literature microwave and millimeter-wave measurements in a full global fitting of the first three torsional states (νt = 0, 1, and 2) of the CH318OH ground vibrational state. The fitted dataset includes 550 microwave and millimeter-wave lines and more than 17 000 Fourier-transform transitions covering the quantum number ranges J ? 30, K ? 15, and νt ? 2. With incorporation of 79 adjustable parameters, the global fit achieved convergence with an overall weighted standard deviation of 1.072, essentially to within the assigned measurement uncertainties of ±50 kHz for almost all of the microwave and millimeter-wave lines and ±6 MHz (0.0002 cm−1) to ±15 MHz (0.0005 cm−1) for the Fourier-transform far-infrared measurements. Based on the global fit results, a database has been compiled containing transition frequencies, quantum numbers, lower state energies and transition strengths. This database will provide support for present and future astronomical studies, such as the on-going Orion surveys in preparation for the launch of the Herschel Space Observatory, in identifying isotopic methanol contributions to interstellar spectra.  相似文献   

2.
New Fourier transform spectra of water vapor are presented in the range 6500-16 400 cm−1 obtained using pathlengths of up to 800 m and long integration times. These spectra have a significantly higher signal-to-noise than previous measurements in this wavenumber range. Wavenumbers, absolute intensities and self-broadening coefficients, all with associated uncertainties, are presented for 3604 lines in the region 13 200-15 000 cm−1. Analysis of these lines using variational linelists, along with other unassigned lines from previous studies, has been conducted. This leads to 952 new line assignments to transitions involving 35 different vibrational states of H216O. A smaller number of lines are assigned to H218O and H217O.  相似文献   

3.
We have investigated a high-resolution Fourier transform (FT) absorption spectrum of the 13CH3OH isotopomer of methanol from 400 to 950 cm−1 with the “Ritz” program. We present the assignments of 7160 transitions, 3021 of which belong to A-symmetry, and 4139 to E-symmetry. These transitions occur between states labeled by K quantum numbers up to 14, and by torsional quantum numbers n up to 4. The “Ritz” program evaluated the energies of the 4684 involved levels with an accuracy of the order of 10−4 cm−1. All of the assigned lines correspond to transitions involving torsionally excited levels within the ground small-amplitude vibrational state.  相似文献   

4.
High resolution spectra of neutral silver have been recorded by Fourier Transform Spectrometry in the region 2 000-8 280 ?(50 000-12 000 cm-1) with silver-neon and silver-argon hollow cathode lamps as sources. This work represents order-of-magnitude improvements, compared to previous work on Ag I, in accuracy of transition wavelengths and wavenumbers, and energy level values. 35 classified Ag I transitions are given, and the wavenumber uncertainty for the strongest lines is less than 0.002 cm-1. Improved values for 28 energy levels are presented. Received 31 January 2000 and Received in final form 13 June 2000  相似文献   

5.
A global analysis of the infrared spectrum of chloromethane involving the ground state and the 13 vibrational states lying up to 2600 cm−1 was recently achieved using high resolution Fourier transform spectra of pure isotopomers. More than 20 000 transitions (cold and hot bands) for each isotopomer 12CH335Cl and 12CH337Cl have been assigned and fitted with a standard deviation of about 3 × 10−4 cm−1 close to the experimental precison. As part of this global effort, improved ground state constants up to sextic centrifugal distortion terms have been determined for each isotopomer taking advantage of the numerous allowed and perturtation-allowed transitions simultaneously fitted using our global model. The axial constants could be determined from ΔK ≠ 0 combinations arising from rovibrational local resonances within Polyads 3 and 5.  相似文献   

6.
The high-resolution Fourier transform spectrum of the ν8 CO-stretching band of CH318OH between 900 and 1100 cm−1 has been recorded at the Canadian Light Source (CLS) synchrotron facility in Saskatoon, and the majority of the torsion-rotation structure has been analyzed. For the νt = 0 torsional ground state, subbands have been identified for K values from 0 to 11 for A and E torsional symmetries up to J values typically well over 30. For νt = 1, A and E subbands have been assigned up to K = 7, and several νt = 2 subbands have also been identified. Upper-state term values determined from the assigned transitions using the Ritz program have been fitted to J(J + 1) power-series expansions to obtain substate origins and sets of state-specific parameters giving a compact representation of the substate J-dependence. The νt = 0 subband origins have been fitted to effective molecular constants for the excited CO-stretching state and a torsional barrier of 377.49(32) cm−1 is found, representing a 0.89% increase over the ground-state value. The vibrational energy for the CO-stretch state was found to be 1007.49(7) cm−1. A number of subband-wide and J-localized perturbations have been seen in the spectrum, arising both from anharmonic and Coriolis interactions, and several of the interacting states have been identified.  相似文献   

7.
In this paper, an atlas of the assigned high-resolution Fourier transform spectra in the range 30-133 cm-l, corresponding far-infrared torsion-rotation band of O-18 methanol in the vibrational ground state, is presented. The estimated accuracy of the lines is ±0004 cm-l. This will be of great assistance with our assignments of optically-pumped FIR laser emission in CH3 180H, in providing FIR data for checking the identification of the IR-pump/FIR-laser transition systems through combination loop relations.  相似文献   

8.
It is proposed that a number of the high-frequency far-infrared (FIR) laser lines observed when CH3OH is optically pumped by high-power CO2 TEA lasers can be identified as refilling torsional transitions within the vibrational ground state. Assignments are presented for 8 such TEA-pump/FIR-laser refilling systems. To provide support for the assigned laser frequencies, high-resolution Fourier transform FIR spectra of CH3OH have been obtained and partially analyzed in the torsional transition region.  相似文献   

9.
The absorption spectrum of natural water vapour around 1.5 μm has been recorded with a typical sensitivity of 5 × 10−10 cm−1 by using a CW-cavity ring down spectroscopy set up based on fibred DFB lasers. A series of 31 DFB lasers has allowed a full coverage of the 6130.8-6748.5 cm−1 (1.63-1.48 μm) region corresponding to the H transparency band of the atmosphere. The line parameters (wavenumber and intensity) of a total of 5190 lines, including 4247 lines of water vapor, were derived by a one by one fit of the lines to a Voigt profile. Different isotopologues of water (H216O, H218O, H217O, and HD16O) present in natural abundance in the sample contribute to the spectrum. For the main isotopologue, H216O, 2130 lines were measured with line intensities as weak as 10−29 cm/molecule while only 926 lines (including a proportion of 30% inaccurate calculated lines) with a minimum intensity of 3 × 10−27 cm/molecule are provided by the HITRAN and GEISA databases. Our comparison in the whole 5750-7965 cm−1 region, has also evidenced that an error in the process of conversion of the intensity units from cm−2/atm to cm−1/(molecule × cm−2) at 296 K, has led to H216O line intensities values listed in the HITRAN-2000 database, systematically 8 % below the original FTS values. The rovibrational assignment was performed on the basis of the ab initio calculations by Schwenke and Partridge with a subsequent refinement and validation using the Ritz combination principle together with all previously measured water transitions relevant to this study. This procedure allowed determining 172, 139, 71, and 115 new energy levels for the H216O, H218O, H217O, and HD16O isotopologues, respectively. The results are compared with the available databases and discussed in regard of previous investigations by Fourier transform spectroscopy. The spectrum analysis has showed that most of the transitions which cannot be assigned to water are very weak and are due to impurities such as carbon dioxide and ammonia, leaving only about 3% of the observed transitions unassigned. The interest of a detailed knowledge of water absorption for trace detectors developed in the 1.5 μm range is underlined: for instance HDO contributes significantly to the considered spectrum while no HDO line parameters are provided by the HITRAN database.  相似文献   

10.
Emission spectra of WO have been observed in the 4000-35 000 cm−1 region using a Fourier transform spectrometer. Molecules were produced by exciting a mixture of WCl6 vapor and He in a microwave discharge lamp. A 3Σ state has been assigned as the ground state of WO based on a rotational analysis of the observed bands and ab initio calculations. After rotational analysis, a majority of strong bands have been classified into three groups. Most of the transitions belonging to the first group have an Ω = 0+ state as the lower state while the bands in the second group have an Ω′′ = 1 state as the lower state. These two lower states have been assigned as X0+ and X1 spin components of the X3Σ ground state of WO. The third group consists of additional bands interconnected by common vibrational levels involving some very low-lying states. The spectroscopic properties of the low-lying electronic states have been predicted from ab initio calculations. The details of the rotational analysis are presented and an attempt has been made to explain the experimental observations in the light of the ab initio results.  相似文献   

11.
The sub-THz spectra of CD3OD have been observed in the frequency ranges of 461-486 GHz and 596-610 GHz using the Backward Wave Oscillator based Technique. The 218 transitions of CD3OD are newly assigned to J=31 and K=12 in the first three torsional states (n=2). The assigned lines include several new series of both a-type and b-type transitions. These THz transitions combined with the previous published millimeter-wave (MMW) and microwave (MW) data and recently observed high resolution Fourier transform far infrared (FIR) spectra have been used in a global fit. The data set contains 1320 MW, MMW, SMMW and FIR transitions with n=2, J=31 and K=12. Using the reduced torsion-rotational Hamiltonian with 67 parameters the fit converges with an RMS deviation of 277 kHz for the MW transitions and of 0.00024 cm-1 for the FIR transitions. Thus molecular parameters are well determined. The MW spectrum of CH2DOH (in the range 97.7 -118.0 and 128.5-146.5 GHz) is also presented which will help astronomers for astrophysical detection and theoretical spectroscopists to get further information on torsion-rotation-vibration interaction in an internal rotor with an asymmetric top.  相似文献   

12.
The first high-resolution infrared spectrum of CHD279Br has been investigated by Fourier transform spectroscopy in the range 940–1100 cm?1 at an unapodised resolution of 0.0025 cm?1. This spectral region is characterised by the v4 (1036.8389 cm?1) fundamental band, corresponding to the CD2 wagging mode. The rotational structure of the a- and c-type components of the hybrid band has been extensively assigned for transitions involving values of J and Ka up to 65 and 15, respectively. The ground state constants up to the quartic centrifugal distortion terms have been obtained for the first time by ground state combination differences from 5251 assigned transitions and subsequently employed for the evaluation of the band origin and the excited state parameters of v4. Watson’s S-reduced Hamiltonian in the Ir representation has been used in the ro-vibrational analysis. The dipole moment ratio |Δμa/Δμc| of the band has been estimated to be 1.3?±?0.1 from spectral simulations.  相似文献   

13.
Oxetane is a four-membered ring molecule exhibiting a large-amplitude ring-puckering motion. In order to analyze this vibration we recorded a rotationally resolved far-infrared spectrum between 50 and 145 cm−1. The analysis of the ring-puckering fundamental band with the assignment of 1108 lines, has been presented in a previous paper. In the present work we present a list of further 6531 assigned transitions between the five lowest excited ring-puckering states. The 4983 term values involved in the transitions assigned in this and in the preceding work have been evaluated by the “Ritz” program, and are now available. An A-reduced Watson Hamiltonian in any of the three representations Ir, IIr, and IIIr was used to perform a fit of the assigned transitions. Precise rotational constants and quartic as well as a full set of sextic centrifugal distortion constants were obtained for the investigated ring-puckering states. For the first time, high-resolution values for the vibrational Gv parameters have been obtained, and we have added terms in x6 and x8 to the double minimum-potential well describing the ring-puckering motion, in order to reproduce their values within the experimental accuracy. The same potential still reproduces the lower resolution values of the Q-branch origins involving higher ring-puckering states up to vrp=14 found in the previous literature.  相似文献   

14.
A total of 7923 transitions previously derived from long pathlength, Fourier transform spectra of pure water vapor (Schermaul et al., J. Mol. Spectrosc. 211 (2002) 169) have been refitted and reanalyzed using a newly calculated variational linelist. Of these, 6600 lines are weaker than 1 × 10−24 cm/molecule, for which reliable intensities are obtained. These weak lines include 1082 lines, largely due to H216O, which have not been previously observed. A total of 7156 lines were assigned resulting in 329 new energy levels for H216O spread over 32 vibrational levels. Estimates are also given for the band origins of the (022), (140), and (051) vibrational states.  相似文献   

15.
More than 800 Δk = ±2 and 60 Δk = ±3 forbidden transitions to the ν4 and 2ν2 vibrational levels, respectively, have been assigned in the Fourier transform spectra of 15NH3, recorded with a pathlength of 96 m. Combination differences derived from these transitions provide information on the spacing between the ground state energy levels with different rotational quantum numbers K in the interval from 0 to 16. These data along with wavenumbers of all the available allowed transitions pertaining to the ground and ν2 states have been subjected to a simultaneous least-squares analysis using two different parametrization models to obtain precise values of the inversion-rotation energy levels.  相似文献   

16.
Room temperature values for self-broadened and hydrogen-broadened Lorentz halfwidth coefficients, and self and hydrogen pressure-induced shift coefficients have been measured for transitions with rotational quantum number m ranging between −24 and 24 in the 2 ← 0 band of 12C16O. The spectra were recorded with the McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak. The analysis was performed using a multispectrum nonlinear least squares technique. We have compared our results with similar measurements published recently.  相似文献   

17.
    
Far-infrared (FIR) laser and infrared pump transitions of the O-18 isotopic species of methanol have been assigned for a number of CO2 laser pump lines with the aid of high-resolution Fourier transform spectra in the FIR and CO-stretch band regions. The structures of the FIR laser energy level systems and the transition assignments were established through the use of closed transition combination loops, which also yield improved accuracies for the FIR laser wavenumbers.  相似文献   

18.
Emission spectra of methane-oxygen low-pressure flames have been recorded at a resolution of 0.02 cm-1 with an infrared Fourier transform spectrometer in the spectral ranges 780-1370 and 1800-5000 cm-1. The flame temperature was about 1850 K and a large number of transitions involving J values as high as 34 for an extended set of vibrational states could be assigned. Combined with already published data sets on H2O, our line position analysis yielded rotational energy levels for many of these states, but only the results relevant to the ground and the (010) states are presented here. The experimental energies for these two states have been fitted with the help of the bending-rotation Hamiltonian approach [L. H. Coudert, J. Mol. Spectrosc. 181, 246-273 (1997)], and for each rotational level, the calculated energy along with its uncertainty is reported and compared with the observed value. Comparisons with other available energy level data sets for the ground and (010) states are also presented. Copyright 1999 Academic Press.  相似文献   

19.
Time-resolved Fourier transform spectroscopy (TR-FTS) is reviewed, with emphasis on synchronous FTS using continuously scanning interferometers. By using a high-resolution Bruker IFS 120 HR, a TR-FTS method has been developed with the help of a microcontroller SX, where a maximum of 64 time-resolved data are recorded with a preset time interval in a single scan of the interferometer. The time resolution is 1 μs, limited by the response time of the detector system used. This method has been applied to a pulsed discharge in an Ar and H2 mixture to observe time profiles of ArH+ and ArH emission spectra. Electronic transitions of He2 have been observed in the infrared region with this method, and from the time profiles, He2 in Rydberg states with higher energy than the b3Π state is found to be produced efficiently in afterglow plasma. Fifteen bands in the 2300-8000 cm−1 region have been assigned by using previously reported data from the optical region. A new band from the 5f state has been assigned for the first time through the 5f-4d band in the 2600 cm−1 region.  相似文献   

20.
Positions and intensities for 453 spectral lines in 12 rovibrational bands of 12C16O2 have been determined between 3700 and 3750 cm−1. At three temperatures (294, 500, and 698 K) eight spectra have been recorded at a pressure around 5 mbar and for an absorption path of about 190 cm−1 using a Bomen DA3 Fourier transform spectrometer (4 × 10−3 cm−1 resolution). Some of the measured positions and intensities can be compared with recent experimental results that validate the experimental set-up and the data analysis procedure. The results are also compared with the values listed in the HITRAN 2000 database. If the agreement is generally good, discrepancies are observed for three hot bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号