首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
A series of AlMCM-41 molecular sieves was synthesized starting from a hydrogel with the following molar composition: 1CTMABr:4.58SiO2:(0.437 + X)Na2O:XAl2O3:200H2O. Tetramethylammonium silicate (TMAS) was used as silicon source and cethyltrimethylammonium bromide (CTMABr) was used as structure template. The obtained materials were characterized by nitrogen adsorption, XRD, FT-IR and TG/DTG. Model-free kinetic algorithms were applied in order to determinate conversion, isoconversion and apparent activation energy to decomposition of CTMA+ species from the AlMCM-41 materials with different silicon/aluminium (Si/Al) ratios of 20, 40, 60 and 80.  相似文献   

3.
The variation of surface properties of SiMCM-41 and AlMCM-41 nanoporous materials as function of synthesis time was examined. The main properties studied were: surface area, pore diameter, pore volume, mesoporous parameter, and wall thickness. Siliceous MCM-41 molecular sieves were synthesized starting from hydrogels with the following molar compositions: 4.58SiO2:0.435Na2O:1 CTMABr:200 H2O for SiMCM-41, and 4.58SiO2:0.485 Na2O:1 CTMABr:0.038 Al2O3:200 H2O, for AlMCM-41. Cetyltrimethylammonium bromide (CTMABr) was used as the structural template. The crystallographic parameters were obtained from XRD data and by nitrogen adsorption using the BET and BJH methods. The results obtained showed a significant variation of the surface properties of the MCM-41 materials as a function of the synthesis time reaching silica wall thickness of ca. 2 nm on the fourth day.  相似文献   

4.
Molecular sieves MCM-41 were synthesized from rice husk ash (RHA) as alternative sources of silica, called RHA MCM-41. The material was synthesized by a hydrothermal method from a gel with the molar composition 1.00 CTMABr:4.00 SiO2:1.00 Na2O:200.00 H2O at 100 °C for 120 h with pH correction. The cetyltrimethylammonium bromide (CTMABr) was used as a structure template. The material was characterized by X-ray powder diffraction, FTIR, TG/DTG, and surface area determination by the BET method. The kinetics models proposed by Ozawa, Flynn–Wall, and Vyazovkin were used to determine the apparent activation energy for CTMA+ species decomposition from the pores of MCM-41 material. The results were compared with those obtained from the MCM-41 synthesized with silica gel. The synthesized material had specific surface area, size, and pore volume as specified by mesoporous materials developed from conventional sources of silica.  相似文献   

5.
The nanostructured hybrid AlMCM-41/ZSM-5 composite was synthesized starting from a hydrogel with molar composition SiO2:0.32Na2O:0.03Al2O3:0.20TPABr:0.16CTMABr:55H2O. The cetyltrimethylammonium bromide (CTMABr) and tetrapropylammonium bromide (TPABr) were used as templates. The above mentioned material presents morphological properties with specific characteristics, such as the surface area of the composite which is approximately half of the surface area of the conventional MCM-41. Another interesting feature is the formation of walls with the double of the density of the MCM-41 structure, which characterizes the hybrid material, resulting in a high stability material for catalytic application. The aim of this study is obtain optimized structures of the hybrid material and for this purpose variations in the synthesis time were carried out. A comparative analysis was performed including X-ray diffraction, Fourier transform infrared spectroscopy, and Thermogravimetry measurements. The model-free kinetic algorithms were applied in order to determinate conversion and apparent activation energy of the decomposition of the CTMA+ and TPA+ species from the hybrid AlMCM-41/ZSM-5.  相似文献   

6.
7.
MCM-41 material was synthesized starting from hydrogel containing colloidal fumed silica, sodium silicate, cetyltetramethylammonium bromide(CTMABr) as surfactant, and distilled water as solvent. These reactants were mixed to obtain a gel with the following composition: 4SiO2:1Na2O:1CTMABr:200H2O. The hydrogel with pH=14 was hydrothermally treated at100°C, for 4 days. Each day, the pH was measured, and then adjusted to 9.5–10 by using 30%acetic acid solution. Thermogravimetry was the main technique, which was used to monitor the participation of the surfactant on the MCM-41 nanophase, being possible to determine the temperature ranges relative to water desorption as well as the surfactant decomposition and silanol condensation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Nanoporous silica with narrow pore size distribution has attracted increasing attention as a novel material for separations and reactions involving large molecules. SBA-15 has been synthesized in an acidic medium using a triblock copolymer as template. In this work, the SBA-15 was synthesized by the hydrothermal treatment at 373 K for 48 h, of a gel with the following overall molar composition: 1.0TEOS:0.017P123:5.7HCl:193H2O, where TEOS is tetraethyl orthosilicate and P123 is poly(ethylene oxide, propylene oxide and 1,4-dioxane). The obtained material was characterized by thermogravimetry, X-ray diffraction, infrared spectroscopy and BET surface area. A kinetic study using the model free model was accomplished in the stage of decomposition of the template (P123). The obtained value of the apparent activation energy was ca. 131 kJ mol–1.  相似文献   

9.
This study is devoted to the thermal decomposition of ZnC2O4·2H2O, which was synthesized by solid-state reaction using C2H2O4·2H2O and Zn(CH3COO)2·2H2O as raw materials. The initial samples and the final solid thermal decomposition products were characterized by Fourier transform infrared and X-ray diffraction. The particle size of the products was observed by transmission electron microscopy. The thermal decomposition behavior was investigated by thermogravimetry, derivative thermogravimetric and differential thermal analysis. Experimental results show that the thermal decomposition reaction includes two stages: dehydration and decomposition, with nanostructured ZnO as the final solid product. The Ozawa integral method along with Coats–Redfern integral method was used to determine the kinetic model and kinetic parameters of the second thermal decomposition stage of ZnC2O4·2H2O. After calculation and comparison, the decomposition conforms to the nucleation and growth model and the physical interpretation is summarized. The activation energy and the kinetic mechanism function are determined to be 119.7 kJ mol?1 and G(α) = ?ln(1 – α)1/2, respectively.  相似文献   

10.
The thermal decomposition of the mixed-ligand complex of iron(III) with 2-[(o-hydroxy benzylidene)amino] phenol and pyridine-[Fe2O(OC6H4CH=NC6H4O)2(C5H5N)4]·2H2O and its non-isothermal kinetics were studied by TG and DTG techniques. The non-isothermal kinetic data were analyzed and the kinetic parameters for the first and second steps of the thermal decomposition were evaluated by two different methods, the Achar and Coats-Redfern methods. Steps 1 and 2 are both second-order chemical reactions. Their kinetic equations can be expressed as: dα/dt=Ae?E/RT(1-α)2  相似文献   

11.
Reliable kinetic information for thermal analysis kinetic triplets can be determined by the comparative method: (1) An iterative procedure or the KAS method had been established to obtain the reliable value of activation energy E a of a reaction. (2) A combined method including Coats-Redfern integral equation and Achar differential equation was put forward to confirm the most probable mechanism of the reaction and calculate the pre-exponential factor A. By applying the comparative method above, the thermal analysis kinetic triplets of the dehydration of CaC2O4·H2O were determined, which apparent activation energy: 81±3 kJ mol-1, pre-exponential factor: 4.51·106-1.78·108 s-1, the most probable mechanism function: f(α)=1 or g(α)=α, which the kinetic equation of dehydration is dα/dt=Ae-E a /RT. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
A comparative kinetic study of the reactions of two mixed valence manganese(III,IV) complexes of macrocyclic ligands, [L1MnIV(O)2MnIIIL1], 1 (L1 = 1,4,8,11‐tetraazacyclotetradecane) and [L2MnIV(O)2MnIIIL2], 2 (L2 = 1,4,7,10‐tetraazacyclododecane) with thiosulfate has been carried out by spectrophotometry in aqueous buffer at 30°C. Reaction between complex 1 and thiosulfate follows a first‐order rate saturation kinetics. The pH dependency and kinetic evidences suggest the participation of two complex species of MnIII(μ‐O)2MnIV under the experimental conditions. Detailed kinetic study shows that reduction of 2 proceeds through an autocatalytic path where the intermediate (MnIII)2 species has been assumed to catalyze the reaction. The difference in the reaction mechanisms is ascribed to the difference in stability of the intermediate complex species, the evidence for which comes from the electrochemical behavior of the complexes and time dependent EPR spectroscopic measurements during the reduction of 2 . © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 119–128, 2004  相似文献   

13.
Five uranium complexes with UO2L′(solv) formula (L′: prepared by condensation reaction between 2-hydroxyacetophenon S-pentyl isothiosemicarbazone (H2L) and 5-bromosalicylaldehyde (Sal); solv: ethanol (1), 2-propanol (2), 2-butanol (3), ethylene glycol (4), 1,2-propanediol (5)) were synthesized through template reactions between H2L, Sal, and UO2(CH3COO)2?2H2O for 1 and recrystallization of 1 in appropriate solvents for the other complexes. The compounds are characterized by melting point, elemental analyses, FT-IR, 1H NMR, 13C NMR, TGA, and X-ray crystallography. Molecular structures of the obtained crystals, determined by X-ray diffraction analysis, showed that the complexes have distorted pentagonal bipyramidal geometry. In all complexes, the bianionic tetradentate ligand (N2O2) with phenolic oxygens (O3, O4), thioamidic and azomethine nitrogen donor atoms is coordinated to the metal center in equatorial positions and the solv molecules occupied the fifth equatorial site and finally linear UO2 is located in axial position. The thermal behavior of the complexes was studied with TGA and DTG data and the results revealed three weight loss stages. The Coats–Redfern method is used for all degradation steps to determine kinetic parameters.  相似文献   

14.
The effect of a water impurity (1.8–10 wt %) on the conductivity of the ionic liquid-H2O binary system was studied in a wide temperature range. It was shown that the interaction between components is characteristic of this system, and the molar ratio of components 1: 1 is boundary between the structures of solution and melt. The basic kinetic features of electrochemical reduction of water of the BMImBr-H2O binary system were determined by voltammetry with linear potential sweep. The transfer coefficient for the cathodic process (α = 0.46) and H2O molecule diffusivities were determined depending on the water content ( $ D_{H_2 O} The effect of a water impurity (1.8–10 wt %) on the conductivity of the ionic liquid-H2O binary system was studied in a wide temperature range. It was shown that the interaction between components is characteristic of this system, and the molar ratio of components 1: 1 is boundary between the structures of solution and melt. The basic kinetic features of electrochemical reduction of water of the BMImBr-H2O binary system were determined by voltammetry with linear potential sweep. The transfer coefficient for the cathodic process (α = 0.46) and H2O molecule diffusivities were determined depending on the water content ( = (0.2–1.3) × 10−10 cm2s−1). Original Russian Text ? E.P. Grishina, A.M. Pimenova, L.M. Ramenskaya, O.V. Kraeva, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 11, pp. 1352–1358.  相似文献   

15.
张忠海  库宗军  刘义  屈松生 《中国化学》2005,23(9):1146-1150
以氯化镝、甘氨酸和L-酪氨酸为原料合成了配合物Dy(Tyr)(Gly)3Cl3·3H2O. 用溶解-反应热量计测得配合物在298. 15K时的标准摩尔生成焓为–(4287. 10±2. 14) kJ / mol. 并用TG-DTG技术对配合物进行了非等温热分解动力学研究, 推断出配合物第二步热分解反应的动力学方程为: dα/dT=3. 14 ×1020 s-1/βexp(-209. 37 kJ / mol /RT)(1-α)2.  相似文献   

16.
By using the flexible bis(triazole) ligand 1,2-bis(1,2,4-triazol-1-yl)ethane (bte), a polyoxometalate-templated compound, [Zn2(bte)4(SiW12O40)]·2H2O (1), was synthesized under hydrothermal conditions. The compound was characterized by single-crystal X-ray diffraction, elemental analyses, IR spectroscopy, photoluminescence spectroscopy, and cyclic voltammetry. Compound 1 is constructed from two motifs: the [SiW12O40]4? polyanion and a bi-nuclear metal-organic circle [Zn2(bte)2]4+. The polyanion exerts a template role, inducing the formation of the bi-nuclear circle. The circles build a 1-D circle connecting circle chain through sharing the same Zn ions. Adjacent circles in the chain are vertical with each other. The template polyanion is surrounded by four circles from four different 1-D chains, forming a 3-D supramolecular structure.  相似文献   

17.
A discharge flow reactor coupled to a laser-induced fluorescence (LIF) detector and a mass spectrometer was used to study the kinetics of the reactions CH3O+Br→products (1) and CH3O+BrO→products (2). From the kinetic analysis of CH3O by LIF in the presence of an excess of Br or BrO, the following rate constants were obtained at 298 K: k1=(7.0±0.4)×10−11 cm3 molecule−1 s−1 and k2=(3.8±0.4)×10−11 cm3 molecule−1 s−1. The data obtained are useful for the interpretation of other laboratory studies of the reactions of CH3O2 with Br and BrO. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 249–255, 1998.  相似文献   

18.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:15,16-tribenzo-9,15-dioxacycloheptadeca-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine with 1,4-bis(2-carboxyaldehydephenoxy)butane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,4-bis (2-carboxyaldehydephenoxy)butane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La (NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H- and 13C-n.m.r., UV-vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoII complex was oxidised to CoIII.  相似文献   

19.
A novel tricyclic dipeptide template, formally derived by coupling (2S,4S)-4-aminoproline (Pro(NH2)) and (S)-2-(carboxymethyl)proline (Pro(CH2COOH)) as a diketopiperazine, has been synthesized in a form suitable for solid-phase peptide synthesis using Fmoc chemistry. This template was incorporated into the cyclic molecule cyclo(-Ala1-Asn2-Pro3-Asn4-Ala5-Ala6-Temp-) (Temp = template), whose conformation in H2O was studied by NMR methods. Average solution structures derived by restrained simulated annealing point to a highly populated βI-turn within the Asn-Pro-Asn-Ala motif and also indicate which conformations are likely to be preferred by the template.  相似文献   

20.
The coupling between the tri(deoxynucleotides) d[(MeO)C-G-Ap] ( 1 ) and d[(NH2)Td5′-C-G-] ( 2 ) to yield the phosphoramidate-linked (hexadeoxy-nucleotide) d[(MeO)C-G-Anh5′Td5′-C-G] ( 3 ) was investigated both in aqueous solution and in reverse micelles constituted of CTAB (cetyl(trimethyl)ammonium bromide) in hexane/pentan-1-ol 9:1. No siginificant difference was found concerning the yield and the kinetics of the reaction in the two systems. The coupling between 1 and 2 was also carried out in the presence of the template d[(MeO)C-G-A-T-C-G] ( 4 ), an analogue of 3 , so as to reproduce the conditions of template-directed self replication. It was shown that the trinucleotide coupling in the presence of a template obeys the so-called square-root law both in H2O and in reverse micelles. No significant difference of the time course of the reaction in H2O and in reverse micelles was observed. This shows that self-replication of oligonucleotides occurs within geometrically bounded structures, which represents a step forward in the mimicking of minimal life processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号