首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Cu1O1.7 oxide film containing a large amout of superstoichiometric oxygen was obtained by low-temperature oxidation of metallic copper in the oxygen plasma. An STM study of the film structure showed that ~10 nm planar copper oxide nanocrystallites with particles packed parallel to the starting metal surface. In an XPS study, the spectral characteristics of the Cu2p and O1s lines indicated that particles with a CuO lattice formed (E bnd(Cu2p 3/2) = 933.3 eV and a shake-up satellite, E bnd(O1s) = 529.3 eV). The additional superstoichiometric oxygen is localized at the sites of contact of nanoparticles in the interunit space and is characterized by a state with the binding energy E bnd(O1s) = 531.2 eV. Due to the formation of a nanostructure in the films during low-temperature plasma oxidation, the resulting copper oxide has a much lower thermal stability than crystalline oxide CuO.  相似文献   

2.
The elemental and ionic compositions of the surface of NbCl2(C n H n ) (n = 10–12), an active catalyst for acetylene cyclotrimerization into benzene, have been determined by X-ray photoelectron spectroscopy. Binding energy data for the sample sputtered with argon ions E b (Nb3d 5/2) = 203.8–204.2 eV) suggest that the oxidation state of niobium in the active catalyst is +2 or +3. The narrow C1s line indicates the equivalence of all carbon atoms, and the corresponding binding energy, E b(C1s) = 284.0 eV, is close to the BE value for cyclic unsaturated hydrocarbons with conjugate double bonds. Interacting with atmospheric oxygen and moisture during sample preparation, niobium ions on the catalyst surface oxidize to their highest oxidation state, +5, characterized by E b (Nb3d 5/2) = 207.3–207.7 eV. These data suggest that niobium oxychlorides or oxides form ion the sample surface. The catalyst is stable in a high vacuum and undergoes slight charging under the action of an X-ray beam, showing poor dielectric properties.  相似文献   

3.
X-ray induced photoelectron spectroscopy (XPS) in combination with depth profiling has been used to investigate the structure and the degradation mechanism of PTFE bonded gas diffusion electrodes (GDE). The XP-spectra of these electrodes show distinctly separated binding states of the C1s electrons at Eb=292 eV and Eb=286 eV. These binding states are related to the carbon in the (CF2)n configuration (C1sCF2) and the graphite (C1sgraphite), respectively. The C1sCF2 signal decreases are induced by both X-ray exposure and ion etching. Simultaneously a decrease of the F1s signal has been approved. The intensity ratio of F1s to C1sCF2 has increased during the experiment. These results indicate a decomposition of PTFE which creates CF fractions, leading to an excess intensity in the energetic range between the C1s binding states of the PTFE and the graphite. Although both the F1s and the C1s spectra are strongly modified by ionizing radiation, samples are comparable, when exposition doses are equal.  相似文献   

4.
Gold oxide films obtained on the surface of polycrystalline gold foil upon oxidation by oxygen activated by a high-frequency discharge have been studied by X-ray photoelectron spectroscopy. High-frequency O2 activation affords oxide films more than 3–5 nm thick. As follows from Au4f spectra, the surface gold atoms are oxidized to the oxidation state +3. The O1s spectra have a composite shape and are decomposed into four components that characterize nonequivalent states of oxygen in the resulting oxide films. It is assumed that the two major oxygen states (E b(O1s) = 529.0 and 530.0 eV) correspond to the oxygen atoms in two-and three-dimensional gold oxide Au2O3, respectively. The oxygen states characterized by the higher binding energies (E b(O1s) = 531.8 and 535.2 eV) likely correspond to molecular oxygen in peroxide and superoxide groups, respectively.  相似文献   

5.
The initial stage of gold oxide layer formation on the gold electrode surface was investigated in 0.5 M H2SO4. X-ray photoelectron spectroscopy (XPS) spectra of pure gold and the anodically polarized gold electrode surface were compared quantitatively. It was found that gold anodic polarization in the E range from ∼1.3 to 2.1 V causes increase in intensity of the XPS spectra at an electron binding energy εb=85.9 eV for gold and at εb=530 eV for oxygen. These εb values correspond to Au3+ and O2− oxidation states in hydrous or anhydrous gold oxide. The larger the amount of the anodically formed surface substance the higher is the intensity of the spectrum at the εb values mentioned above. It was concluded that gold anodic oxidation, yielding most likely an Au(III) hydroxide surface layer, takes place in the E range of the anodic current wave beginning at E≈1.3 V. At EB=1.7 V (the potential of the Burshtein minimum) the stationary surface layer consists of 2.5 to 3 molecular layers of Au(OH)3. The theoretical amount of charge required for the reduction of one molecular layer of Au(OH)3 is ∼0.15 mC cm−2, since the Au(OH)3 molecule is planar and occupies about four atomic sites on the electrode surface.  相似文献   

6.
Manganese trimethylacetate complexes with different ligand environments were studied by X-ray photoelectron spectroscopy (XPS). Changes in the Mn 2p, C 1s, O 1s, and N 1s X-ray photoelectron spectra caused by the substitution of Mn → N coordination bonds for Mn → O coordination bonds were examined. In the spectra of manganese trimethylacetate complexes, the satellite component was identified, which is evidence of the high-spin state of manganese atoms. An increase in the magnetic moment of the manganese complexes, both with the oxygen and mixed oxygen-nitrogen environment, is accompanied by an increase in the spin-orbit splitting, the difference in E b between the satellite and the Mn 2p 3/2 line, and the ratio between the integrated intensities of the satellite and the Mn 2p 3/2 line (I sat3/2/I Mn 2p 3/2). The XPS data made it possible to determine the measure of covalence of the metal-ligand bond. The XPS results are consistent with X-ray crystallography data.  相似文献   

7.
Adsorption ability and reaction rate are two essential parameters that define the efficiency of a catalyst. Herein, we implement density functional theory (DFT) and report that CO can be oxidized by a pyramidal Cu cluster with an associated reaction barrier Eb=1.317 eV. In this case, our transition state calculations reveal that the barrier can be significantly lowered after superimposing a negative electric field. Moreover, when the field intensity corresponds to F=?0.010 au, the magnitude of Eb=0.698 eV is equivalent to—or lower than—those of typical catalysts such as Pt, Rh, and Pd. The superimposition of a positive field is found to enhance the release of the nascent CO2 molecule. Our study demonstrates that small Cu clusters have better adsorption ability than the corresponding flat surface while the field can be used to enhance the purification of the exhaust gas.  相似文献   

8.
Selective methanol oxidation to formaldehyde over polycrystalline copper has been studied with the use of in situ XPS combined with mass spectrometry. It has been shown that the copper surface completely covered by methoxy groups exhibits low activity in methanol oxidation, whereas the metallic copper with sub-oxide oxygen is active in the selective oxidation of methanol to formaldehyde. The concentration of the sub-oxide oxygen species seems to correlate with the rate of formaldehyde production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Abstract

The solid-state polymerization of diacetylenes (MDA-PBT-PDA) is studied with a concerted reaction model and the calculation method of EHMO-ASED and EHCO-ASED, where MDA = crystalline molecular diacetylenes, PBT = polybutatrienes, and PDA = polydiacetylenes. As the reaction goes on, the symmetry of frontier orbitals inverts at state PBT, HOCO from C 2-antisymmetry to C 2-symmetry and LUCO from C 2-symmetry to C 2-antisymmetry, which means completion of the 1,4-addition. Two necessary conditions must be satisfied for the reaction to take place: 1) the geometric parameters must undergo a series of concerted changes to make the conformation suitable for the intermolecular 1,4-addition, which should overcome an energy barrier Eb ; 2) the symmetry match between the frontier crystal orbitals of the reactant and the product must be satisfied-electrons of the reactant should be excited from HOCO (C 2-antisymmetry) into LUCO (C 2-symmetry), which faces an energy gap E g. At state MDA, there is E g(MDA) ≈ 5.6 eV. If MDA and PDA are analyzed according to Woodward-Hoffmann's rules, this reaction would be considered photochemically allowed but thermochemically forbidden. It has been shown that the E g gradually decreases along the reaction coordinate from state MDA to PBT. At state PBT there is E g(PBT) ≤ 0.1 eV, and the electrons of the reactant can be easily excited there. Since Eb ≤ 1.0 eV is not very large and Eg (PBT) ≤ 0.1 eV is very small, the two necessary conditions mentioned above can be satisfied thermally. Therefore, thermal polymerization can take place smoothly. By this pathway the apparent activation energy of the reaction will be Ea ≤ 1.0 eV, which is consistent with the activation energies of the polymerizations of diacetylenes in the literature.  相似文献   

10.
The accuracy of quantitative XPS analysis can be improved using predetermined transmission functions. Two different calibration methods are used for estimating the transmission function T(E) of a photoelectron spectrometer, applying a survey spectra approach (SSA) and a quantified peak‐area approach (QPA) to minimize the quantification error. For the SSA method, Au, Ag and Cu spectra measured with the Metrology Spectrometer II have been used. The new QPA method was built up from Au 4f, Au 4d, Au 4p3/2, Ag 3d, Ag 3p3/2, Cu 3p, Cu 2p3/2, Ge 3p and Ge 2p3/2 standard peak areas, applying adequate ionization cross‐sections and mean free path lengths for different pass energies (10 and 50 eV), lens modes (large area, large area XL, small area 150) and x‐ray sources (Al/Mg Twin and Al Mono). In the energy range 200–1500 eV a transmission function T(E) = a0 + b1E (where a0, b1 and b2 are variable parameters) was found to give an appropriate approximation for eight tested spectrometer settings, implementing the largest changes in the case of pass energy variations. Determination and application of the transmission functions were integrated in the XPS analysis software (UNIFIT 2004) and tested by means of an Ni90Cr10 alloy. The results demonstrate the practicability of the SSA and QPA methods, giving decreased errors of <8% in comparison with errors up to 38% obtained using Wagner's sensitivity factors. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
The preparation of model silver catalysts supported on highly oriented pyrolytic graphite is described, and the effect of the Ag particle size on the catalytic ethylene oxidation into ethylene oxide, studied by in situ XPS and mass spectrometry, is considered. For a mean particle diameter of 8 nm, the adsorbed oxygen species characterized by an O 1s binding energy of 530.8 ± 0.2 eV (electrophilic oxygen) forms on the silver surface exposed to the ethylene-oxygen reaction mixture. Larger silver particles with a mean diameter of 40 nm additionally contain the adsorbed oxygen species characterized by an O 1s binding energy of 529.2 ± 0.2 eV (nucleophilic oxygen). The presence of both oxygen species on the surface of the larger particles ensures the formation of ethylene oxide, while the sample with the smaller silver particles is inactive in the epoxidation reaction. The O 1s signal at 530.8 eV is partly due to oxygen dissolved in the subsurface layers of silver.  相似文献   

12.
The structural phase transition from fluorite to pyrochlore and the strength of the coordination bond of Zr–O in Gd2Zr2O7 were investigated by XANES spectra of both O and Zr K‐edge. The energy difference of the O K‐edge absorption spectra at 532 and 536 eV was assigned to the crystal field splitting energy of the 4d orbital (ΔE4d, t2g and eg) of the Zr ion. Also, in the samples prepared at higher temperatures, the 536 eV peak moves slightly to higher energy, whereas the absorption energy of 532 eV peak does not shift. A correlation between ΔE4d and the strength of interaction between Zr (4d) and O (2p) orbitals has been found. Furthermore, two Zr K‐edge absorptions at 18020 and 18030 eV of Gd2Zr2O7 have been observed; the splitting energy (ΔE), peak intensity ratio (I18030/I18020), and FWHM of the first derivative of the absorption curve depend on the preparation temperatures. The effect of crystal symmetry and Zr‐O bonding character on the XANES spectral profile was discussed.  相似文献   

13.
Palladium catalysts based on Siralox and AS aluminosilicate supports for the deep oxidation of methane were studied. With the use of XRD analysis, it was found that they were heterophase systems consisting of an amorphous aluminosilicate and γ-Al2O3 stabilized against agglomeration. It was found that the catalytic activity of palladium-aluminosilicate catalysts in the deep oxidation of methane at 500°C depended on the support precalcination temperature. X-ray photoelectron spectroscopy (XPS) was used to study the states of the AS-30 aluminosilicate support calcined at 600, 800, or 1000°C and palladium supported on it. It was found that the action of an acid impregnation solution of palladium nitrate on the aluminosilicate calcined at 800°C resulted in a structural rearrangement of the aluminosilicate surface. This rearrangement resulted in the stabilization of both palladium oxide and palladium metal particles at surface defects and the incorporation of these particles into the aluminosilicate after catalyst calcination. As a result, an anomalous decrease in catalytic activity was observed in aluminosilicate samples calcined at 800°C. According to XPS data, palladium in the catalyst was stabilized in the following three phases: metal (E b(Pd 3d 5/2) = 334.8 eV), oxide (E b(Pd 3d 5/2) = 336.8 eV), and “interaction” (E b(Pd 3d 5/2) = 335.8 eV) phases. The ratio between these phases depended on support and catalyst calcination temperatures. The interaction phase, which consisted of PdOx clusters stabilized in the aluminosilicate structure, was responsible for the retention of activity after calcination at high temperatures (800°C). Based on an analysis of XPS data, it was hypothesized that palladium in the interaction phase occurred in a charged state with the formal charge on the Pd atom close to 1 + (δ+ phase).  相似文献   

14.
The electronic structure of atomic oxygen adsorbed species is studied by means of the density functional theory in the context of the ethylene epoxidation on the silver surface. The adsorbed oxygen species are modeled by the Ag2O molecule either in its closed (1A1) or open-shell states (3B1 and 1B1). In both open-shell states the 1s level appears to be lower than that in 1A1 by about 2 eV. This is apparently a sequence of the separation of electron pair, occupying the *-type highest occupied molecular orbital (HOMO), decreasing the electron density at the oxygen center. Such variation of the O1s level for closed and open-shell Ag2O states seems to explain the X-ray photoelectron spectroscopy (XPS) data concerning two distinct atomic oxygen species on silver surface having the O1s binding energy of about 528 and 530 eV, called nucleophilic and electrophilic oxygen, respectively. The X-ray absorption O K-edge spectra (XANES) calculated for two types of the Ag2O states by means of multiple-scattered-X-based approach appears to be in a qualitative agreement with those experimentally recorded for nucleophilic and electrophilic oxygen.  相似文献   

15.
Summary The interaction of O2with Pd(110) has been studied by TDS and XPS at T = 400 K and at pressures PO2 from 2.6x10-6to 10 Pa. At low exposures in O2(e£1-5 L), an adsorption layer withqof ca.0.5 and with the O1s peak at BE = 529.3 eV has been found to form on the surface. Whenegrows from 5 to 108L, the position and intensity of the oxygen O1s peak remain practically constant. At the same time, as much as 5 mL of oxygen is absorbed according to the TDS data. The results obtained by TDS and XPS indicate that oxygen penetrates deep into the subsurface layers of palladium (315-20 ?) and is distributed in its bulk in a low concentration.  相似文献   

16.
The selective oxidation of n-pentane on vanadium–phosphorus oxide (VPO) catalysts with bismuth additives (Bi/V = 0–0.30) is studied. The catalysts are characterized by XRD, XPS, and specific surface area measurements using nitrogen adsorption. Their acidic properties are studied (using ammonia TPD and the 2-methyl-3-butyn-2-ol reaction). It was found that the introduction of bismuth insignificantly affects the specific surface area but increases the surface concentration of phosphorus and changes the acidic properties of the catalysts. The specific catalytic activity of samples in n-pentane oxidation correlates with the effective charge of surface oxygen (E b of O1s electrons). The selectivity to citraconic anhydride increases with an increase in the general surface acidity. The selectivity to maleic anhydride increases with an increase in the Brønsted acidity of the surface. The selectivity to phthalic anhydride increases with an increase in the Lewis acidity. The pathways of product formation in the partial oxidation of n-pentane are proposed.  相似文献   

17.
An oxygen-supplying medium (OSM), which was prepared by embedding a synthetic heme complex in a bilayer of polymerized lipid liposome (polylipid liposome/heme), could bind molecular oxygen reversibly under physiological conditions. The oxygen-exchange reaction of OSM with blood was examined by using a liquid/liquid artificial lung device. For example, deoxy-blood (p s(O2) = 0 torr) was passed countercurrent to oxy-OSM (p s(O2) = 154 torr) through hollow fibers of the device to provide oxy-blood (p b(O2) = 57 torr). The OSM was physicochemically and mechanically stable under strong shear stress during the passage through the hollow fibers and acted as the oxygen mediator to blood.  相似文献   

18.
The vertical ionization potentials (IPS ) of B2H6 are calculated by means of the ΔESCF procedure, within the scheme of ab initio LCAO-MO-HF-SCF . The basis set used is LEMAO -3G. The scaling factors of the various atomic orbitals for the ground state and for the various hole states are optimized independently. The iteration procedure is specially designed to avoid the changes of the symmetry of the remaining occupied orbitals. The 1 ag (B1s) hole is found to be localized. The vertical IP of the 1 ag electron is calculated to be 196.5 eV, in fair agreement with experimental value. The D2h symmetry is thereby broken and reduced to C2V symmetry. The valence holes are found to be delocalized. The calculated vertical IPS are: 21.781, 16.974, 14.842, 14.389, 13.599, and 12.380 eV for the 2ag, 2b1u, 1b3u, 1b2u, 3ag, and 1b3g electrons, respectively. The agreement with experimental values is much better than the Koopmans' values. All these results are in favor of the concept that the nature of the convelent bond should be considered as a result of the mutual interactions and mutual conditioning between the wave nature of the electronic motion on the one side and the various attractive and repulsive factors on the other side.  相似文献   

19.
KSbWO6 was prepared by sol‐gel method. N‐doped KSbWO6 (KSbWO6–xNx) was obtained by heating KSbWO6 and urea at 400 °C. Both the compounds are characterized by powder X‐ray diffraction (XRD), TEM, SEM‐EDS, X‐ray photo electronic spectroscopy (XPS), and UV/Vis diffuse reflectance spectroscopy (UV‐DRS). A shift in the peak positions of powder XRD and XPS spectra was observed. The band gap energy (Eg) of KSbWO6 and N‐doped KSbWO6 was obtained from their diffused reflectance spectra.Eg was reduced from 3.17 eV to 2.56 eV upon nitrogen doping in KSbWO6. The reduction of the Eg is attributed to the lifting of valence band of N‐doped KSbWO6, due to the mixing of O 2p states with N 2p states. The photocatalytic activity of both the samples was studied by degradation of methylene blue (MB). The nitrogen doped KSbWO6 shows higher photocatalytic activity compared to that of KSbWO6.  相似文献   

20.
The reactions of the platinum and rhodium model catalysts applied to aluminum oxide with NOx (10 Torr NO + 10 Torr O2) were studied by X-ray photoelectron spectroscopy. The reaction conducted at room temperature formed on the surface of the oxide support the NO 3,s ? nitrate ions characterized by the N1s line at 407.4 eV and O1s line at 533.1 eV and the NO 2,s ? nitrite ions characterized by the N1s line with a binding energy of 404.7 eV. At the same time, the Pt4f and Rh3d lines of the supported platinum particles are shifted toward higher binding energies by 0.5–1.0 eV and 0.7–1.2 eV, respectively. It is assumed that the binding energies increase due to changes in the chemical state of the platinum metal in which oxygen is dissolved. The reaction of NOx with Pt/Al2O3 at 200°C forms platinum oxide defined by the Pt4f 7/2 line with a binding energy of 72.3 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号