首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The electrical resistance of FeBO3 crystals at high and ultrahigh pressures (up to 198 GPa) and low temperatures has been measured using diamond anvil cells. It has found that in the high-pressure phase, 46 GPa < P < 100 GPa, the activation energy E ac decreases gradually from 0.55 to 0.3 eV according to a linear law. Its extrapolation to zero gives an estimated value of about 210 GPa for the pressure at which complete metallization is expected. However, above 100 GPa, the linear E ac(P) dependence smoothly transforms to a nonlinear one. At the same time, the temperature dependence of the electrical resistance at fixed pressure significantly deviates from the Arrhenius activation law and does not obey the Mott law for the hopping conductivity. Experimental data demonstrate the dependence of the activation energy E ac both on pressure and temperature. At T = 0, the gap tends to zero. Theoretical analysis shows that the decrease in E ac upon cooling can be interpreted in terms of the transition of the low-spin FeBO3 phase to the magnetically ordered (antiferromagnetic) state.  相似文献   

2.
3.
The transformation of magnetic structure under hydrostatic and quasi-hydrostatic pressures up to 4 GPa was studied for iron borate FeBO3 by the neutron diffraction method. Under quasi-hydrostatic conditions, the orientation of iron magnetic moments changes at pressures P≥1.4 GPa. Under hydrostatic conditions, no changes in the magnetic structure of iron borate were observed up to 2.1 GPa. This behavior is caused by the influence of the inhomogeneity (in magnitude and direction) of elastic stresses on the configuration of magnetic sublattices.  相似文献   

4.
The optical absorption spectra of iron borate FeBO3 were measured in diamond anvil cells at high pressures up to P=82 GPa. The electronic transition with an abrupt jump in the absorption edge from ~3 to 0.8 eV was observed at P≈46 GPa. The resistance and its temperature dependence were directly measured for FeBO3 at high pressures up to 140 GPa. It was established that the electronic transition at P≈46 GPa was accompanied by the insulator-semiconductor transition. In the high-pressure phase, the thermoactivation gap decreases smoothly at 46<P<140 GPa approximately from 0.55 to 0.2 eV following the linear law. The extrapolated value of the pressure at which the sample becomes fully metallic is equal to about 210 GPa.  相似文献   

5.
Optical absorption spectra of single crystals of the ferromagnetic semiconductor VBO3 are studied at high pressures up to 70 GPa achieved in a diamond-anvil cell. An electronic transition accompanied by sharp changes in the optical parameters and a decrease in the optical gap from E 0 = 3.02 eV to 2.25 eV is found at the pressure P C ~ 30 GPa. The gap does not disappear in the high-pressure phase and its value becomes typical of semiconductors. This is indicative of a semiconductor-semiconductor transition. The transition to the metallic state may occur at the critical pressure P met ≈ 290 GPa.  相似文献   

6.
The crystal structure and Raman spectra of Pr0.7Ca0.3MnO3 manganite at high pressures of up to 30 GPa and the magnetic structure at pressures of up to 1 GPa have been studied. A structural phase transition from the orthorhombic phase of the Pnma symmetry to the high-pressure orthorhombic phase of the Imma symmetry has been observed at P ∼ 15 GPa and room temperature. Anomalies of the pressure dependences of the bending and stretching vibrational modes have been observed in the region of the phase transition. A magnetic phase transition from the initial ferromagnetic ground state (T C = 120 K) to the A-type antiferromagnetic state (T N = 140 K) takes place at a relatively low pressure of P = 1 GPa in the low-temperature region. The structural mechanisms of the change of the character of the magnetic ordering have been discussed.  相似文献   

7.
The magnetic behavior of a Bi57FeO3 powdered sample was studied at high pressures by the method of nuclear forward scattering (NFS) of synchrotron radiation. The NFS spectra from 57Fe nuclei were recorded at room temperature under high pressures up to 61.4 GPa, which were created in a diamond anvil cell. In the pressure interval 0 < P < 47 GPa, the magnetic hyperfine field HFe at the 57Fe nuclei increased reaching a value of ~52.5 T at 30 GPa, and then it slightly decreased to ~49.6 T at P = 47 GPa. As the pressure was increased further, the field HFe abruptly dropped to zero testifying a transition from the antiferromagnetic to a nonmagnetic state (magnetic collapse). In the pressure interval 47 < P < 61.4 GPa, the value of HFe remained zero. The field HFe recovered to the low-pressure values during decompression.  相似文献   

8.
The effect of diamagnetic impurities on the stability of the homogeneous magnetic state of rhombohedral antiferromagnets with weak ferromagnetism (α-Fe2O3:Ga and FeBO3:Mg) is studied experimentally. It is shown that the application of an external magnetic field in the basal plane in the crystals under study in a certain temperature range induces a magnetic superstructure along the hard magnetization axis, which can be presented in the form of a ripplon phase with the azimuth of the local ferromagnetism vector oscillating about the direction of the field. The preferred orientation of the discovered modulated structures relative to crystallographic directions in the basal plane of α-Fe2O3:Ga and FeBO3:Mg is studied, and the dependence of the spatial period of the superstructure on the applied magnetic field and temperature is analyzed. The magnetic-field-induced transition of the studied crystals from a homogeneous to an inhomogeneous magnetic state is described phenomenologically on the basis of the thermodynamic potential with gradient terms. In the discussion of physical reasons for magnetic order parameter modulation in weak ferromagnetic doped with diamagnetic ions, preference is given to the mechanism associated with the emergence of uniaxial magnetic centers with a random distribution of azimuths of easy axes in the basal plane of the crystal in the vicinity of impurities. A model describing the formation of a modulated magnetic state in α-Fe2O3:Ga and FeBO3:Mg is proposed, according to which the competition between magnetoanisotropic and Zeeman interactions in the inhomogeneous magnetic phase of these crystals leads to periodic deviations in the direction of the local ferromagnetism vector from the direction of magnetization.  相似文献   

9.
Weak ferromagnetic moment along the triad axis of FeBO3 crystals has been calculated on the basis of the single-ion model taking into account the cubic invariant of the crystal field in the spin Hamiltonian.  相似文献   

10.
The optical absorption spectra from bismuth ferrite (BiFeO3) have been studied at high pressures up to 60 GPa in diamond anvil cells. An electronic transition at which the energy of the optical absorption edge decreases sharply from ~1.5 eV to zero has been observed at room temperature in a pressure range of 45–55 GPa. This indirectly indicates a insulator-metal transition. The observed electronic transition correlates with the recently revealed structural and magnetic transitions induced by high pressures in this crystal. The behavior of the optical absorption edge with decreasing the pressure is completely reversible in correlation with the reversibility of the magnetic transition. The “smearing” of the structural transition in pressure is caused by thermal fluctuations between the high-spin state and low-spin state of the Fe3+ ions near the transition.  相似文献   

11.
Change in the crystal structure of the BiFeO3 multiferroic at high pressures up to 70 GPa in a diamond anvil cell has been studied by the method of synchrotron x-ray diffraction at room temperature. The experiment has been carried out under hydrostatic conditions with helium as a pressure-transferring medium. An anomaly has been observed in the behavior of the structural parameters at pressures P c ≈ 40?50 GPa. This anomaly correlates with the effect of the magnetic collapse of iron moments revealed in this pressure range. It has been found that the bulk compression modulus is equal to B 0 = (75.5 ± 15.5) GPa in the interval 0 < P < P c and is almost quadrupled to a value of B = (292 ± 9) GPa in the interval P > P c. When the pressure decreases, the behavior of the structural parameters is completely reversible in correlation with the reversibility of the magnetic transition. The “diffuseness” of the structural transition in pressure is explained by thermal fluctuations between the high-and low-spin states of Fe3+ ions in the transition region.  相似文献   

12.
The effect of high pressure up to 65 GPa on the crystal structure and optical absorption spectra of NdFeO3 orthoferrite single crystals is studied in diamond anvil cells. At P~37.5 GPa, an electronic transition at which the optical absorption edge jumps from ~2.2 to ~0.75 eV is observed. The equation of state V(P) is studied on the basis of the X-ray diffraction data obtained under pressure. This study reveals a first-order structural phase transition at P~37 GPa with a jump of ~4% in the unit cell volume. It is shown that the phase transition observed in rare-earth orthoferrites at 30–40 GPa is a transition of the insulator-to-semiconductor type.  相似文献   

13.
Effects of a mechanical shear on the electron transport properties of a (LaMnO3)2/(SrMnO3)2 superlattice are investigated using first-principle DFT calculations. While the unstrained superlattice is a 3-D conducting half metal, application of a pyramidal shear transforms it into a non-spin-polarized conductor. Depending on whether the out-of-plane component of the shear is tensile or compressive the conductivity is 1-D out-of-plane or 2-D in-plane. The shear-induced low-dimensional conductivity is also associated with the FM-AFM transition.  相似文献   

14.
We present a theoretical study of spectral, magnetic, and structural properties of the iron borate FeBO3. Within the DFT + DMFT method combining density functional theory with dynamical mean-field theory FeBO3 was investigated under pressures up to 70 GPa at 300 K. We found that FeBO3 is an insulator with a gap of 2.0 eV with antiferromagnetic ordering at ambient pressure in agreement with experiments. In our calculations, we showed that Fe ions in FeBO3 undergo a high-spin to low-spin transition under pressure with change from antiferromagnetic to paramagnetic state, and demonstrate that the spin and magnetic transitions occur simultaneously with an isostructural transition at 50.4 GPa with the volume collapse of 13%.  相似文献   

15.
The temperature dependence of the electrical resistance has been studied for heterostructures formed by antiferromagnetic LaMnO3 single crystals of different orientations with epitaxial films of ferroelectric Ba0.8Sr0.2TiO3 deposited onto them. The measured electrical resistance is compared to that exhibited by LaMnO3 single crystals without the films. It is found that, in the samples with the film, for which the axis of polarization in the ferroelectric is directed along the perpendicular to the surface of the single crystal, the electrical resistance decreases significantly with temperature, exhibiting metallic behavior below 160 K. The numerical simulations of the structural and electronic characteristics of the BaTiO3/LaMnO3 ferroelectric?antiferromagnet heterostructure has been performed. The transition to the state with two-dimensional electron gas at the interface is demonstrated.  相似文献   

16.
A theoretical model based on long-range dispersion corrections of the charge density functional is proposed for model Hg2Cl2 calomel crystals, typical representatives of molecular inorganic compounds where the intermolecular interaction is found to play an important role. This model successfully describes the electronic state and the phonon spectrum of the above crystal, predicts the earlier unstudied phase transition at high hydrostatic pressure. Study of the baric behavior of the phonon spectrum with Raman spectroscopy observes the soft mode in the low-symmetry orthorhombic phase with the frequency softening as the pressure rises. Pressures above 9 GPa considerably transform the Raman spectra, indicating a structural phase transition.  相似文献   

17.
The magnetic and thermal properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite are investigated in wide temperature (4–350 K) range, including under hydrostatic pressure (0–1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T f of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value ∼4.5 K/GPa, while the magnetic ordering T MO temperature dependence is characterized by derivative value ∼13 K/GPa. The volume fraction of sample having ferromagnetic state is V fer ∼ 13% and it increases under a pressure of 1.1 GPa by ΔV fer ≈ 6%. Intensification of ferromagnetic properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.  相似文献   

18.
We report the results of a study of magnetic, electrical, and thermodynamic properties of a single crystal of the magnetic compound Cr0.26NbS1.74 at ambient and high pressures. Results of the measurements of magnetization as a function of temperature reveal the existence of a ferromagnetic phase transition in Cr0.26NbS1.74. The effective number of Bohr magnetons per Cr atom in the paramagnetic phase of Cr0.26NbS1.74 is µeff ≈ 4.6µB, which matches the literature data for Cr1/3NbS2. Similarly, the effective number of Bohr magnetons per Cr atom in the saturation fields is rather close in both substances and corresponds to the number of magnetons in the Cr+3 ion. In contrast to the stoichiometric compound, Cr0.26NbS1.74 does not show a metamagnetic transition, that indicates the lack of a magnetic soliton. A high-pressure phase diagram of the compound reveals the quantum phase transition at T = 0 and P ≈ 4.2 GPa and the triple point situated at T ≈ 20 K and P ≈ 4.2 GPa.  相似文献   

19.
Pressure dependences of the thermopower and electrical resistivity of the La0.75Ca0.25MnO3 manganite are measured in the pressure range 0–20 GPa at room temperature. The absolute value of the thermopower increases in the pressure range 0–3 GPa and decreases at higher pressures. At the same time, the electrical resistivity decreases over the entire pressure range. It is found that the competing effect of the closing of the bandgap, which is determined by the activation energy for the thermopower, and the pressure broadening of the d bands is the cause of the observed behavior of the thermoelectric properties of La0.75Ca0.25MnO3, which is untypical for the majority of dielectrics and semiconductors with single-band unipolar conductivity in the absence of phase transitions and is accompanied by a change in the sign of the pressure coefficient of the thermopower. The interrelation between the magnetic and thermoelectric properties of manganites under pressure is analyzed in the framework of the double exchange model. The causes of the considerable decrease in the pressure coefficients of the insulator-metal transition and Curie temperatures under pressure experimentally observed in manganites are discussed.  相似文献   

20.
A many-electron model is proposed for the band structure of FeBO3 with regard to strong electron correlations in the d4, d5, and d6 configurations. Under normal conditions, FeBO3 is characterized by a dielectric charge-transfer gap in the strong correlation regime U?W. With increasing pressure, not only does the d-band W width grow but simultaneously the effective Hubbard parameter Ueff sharply drops, which is due to the crossover of high-spin and low-spin ground state terms of the Fe2+, Fe3+, and Fe4+ ions. It is predicted that a transition from the semiconducting antiferromagnetic state to the metallic paramagnetic state will occur in the high-pressure phase with increasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号