首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The reaction between 2-(hydroxyethyl)pyridine (hepH) and a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3](ClO4) and [Mn3O(O2CMe)6(py)3](py) in MeCN leads to isolation of [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 10% yield. The complex is 2MnII,16MnIII and consists of a Mn4O6 central unit to either side of which is attached a Mn7O9 unit. Magnetization data collected in the 2.0-4.0 K and 20-50 kG ranges were fit to yield S = 13, g = 1.86, and D = -0.13 cm-1 = -0.19 K, where D is the axial zero-field splitting parameter. AC susceptibility studies in the 0.04-4.0 K range at frequencies up to 996 Hz display out-of-phase (chiM' ') signals, indicative of a single-molecule magnet (SMM). Magnetization vs applied DC field scans exhibit hysteresis at <1.0 K, confirming 1 to be a SMM. DC magnetization decay data were collected on both a microcrystalline sample and a single crystal, and the combined data were used to construct an Arrhenius plot. Between 3.50 and 0.50 K, the relaxation rate is temperature-dependent with an effective barrier to relaxation (Ueff) of 14.8 cm-1 = 21.3 K. Below ca. 0.25 K, the relaxation rate is temperature-independent at 1.3 x 10-8 s-1, indicative of quantum tunneling of magnetization (QTM) between the lowest energy Ms = +/-13 levels of the S = 13 state. Complex 1 is both the largest spin and highest nuclearity SMM to exhibit QTM.  相似文献   

2.
The compound [CeIVMnIII8O8(O2CMe)12(H2O)4].4H2O (1.4H2O) has been obtained from a template synthesis involving the reaction of the chain polymer {[MnIII(OH)(O2CMe)2] .(MeCO2H).(H2O)}n (3) with Ce(IV). Compound 1 contains a MnIII8 loop inside which is held the Ce(IV) ion by the bridging oxide ions. Magnetization and magnetic susceptibility studies establish that 1 has an S = 16 spin ground state, the largest yet for a Mn cluster, and displays the slow magnetization relaxation and hysteresis behavior of a single-molecule magnet (SMM). It is thus the highest spin Mn SMM discovered to date.  相似文献   

3.
A series of single-chain magnets, [Mn2(saltmen)2Ni(pao)2(L)2](A)2 (saltmen(2-)=N,N'-(1,1,2,2-tetramethylethylene) bis(salicylideneiminate), pao-=pyridine-2-aldoximate; A-=ClO4- with L=4-picoline; 2, 4-tert-butylpyridine; 3, N-methylimidazole; 4, and L=pyridine with A-=BF4-; 5, PF6-; 6, ReO4-; 7), was prepared by reactions between MnIII dimer units, i.e., [Mn2(saltmen)2(H2O)2](A)2 (A-=ClO4-, BF4-, PF6-) or Mn2(saltmen)2(ReO4)2, and NiII monomeric units, i.e., Ni(pao)2(L)2, in methanol/water media. The crystal structures of 4, 6, and 7 were established by single-crystal X-ray crystallography. These three compounds are isostructural with [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2 (1) (Clérac, R.; Miyasaka, H.; Yamashita, M.; Coulon, C. J. Am. Chem. Soc. 2002, 124, 12837) and crystallize in monoclinic space group C2/c. The linear arrangement of MnIII dimer units and NiII building blocks leads to an alternating chain having a repeating unit, [-(O)2-Mn-ON-Ni-NO-Mn-]. The chains are well separated with the nearest interchain intermetallic distance of 10.36 A for 4, 10.51 A for 6, and 10.30 A for 7, and there is no significant pi-pi interchain interaction between ligands. The void space between the chains is occupied by counteranions, which control the three-dimensional organization of the chains. The X-ray diffraction analysis (XRD) on a powder sample was also performed for all compounds. The XRD patterns for 1, 2, and 4-7 are very similar, emphasizing the isostructural nature of these materials although they have individually slight different interchain distances. Inversely, the XRD pattern for 3 reveals a completely different shape being indicative of the peculiar crystal packing compared to the others. Nevertheless, the one-dimensional nature of the structure is also kept in 3 as indicated by magnetic measurements. The whole family of compounds exhibits quasi-identical magnetic behavior compared to that described for 1. Above 30 K, the heterometallic chain can be described as an assembly of antiferromagnetically coupled Mn...Ni....Mn trimers (via oximate bridge, -24.2 K相似文献   

4.
Two manganese(III) tetradentate Schiff-base dimers to which N,N'-dicyano-1,4-naphthoquinonediiminate (DCNNQI) radicals are attached have been selectively synthesized by varying the solvents used in the reactions: [Mn2(5-MeOsaltmen)2(DCNNQI)2].MeOH (1) and [Mn2(5-MeOsaltmen)(2)(DCNNQI)(2)] x 2CH2Cl2.2CH3CN (2) [5-MeOsaltmen2- = N,N'-(1,1,2,2-tetramethylethylene)bis(5-methoxysalicylideneiminate)]. These two complexes share the same molecular core, [(DCNNQI.-)-Mn(III)-(O)2-Mn(III)-(DCNNQI.-)], where -(O)2- is a biphenolate bridge in the out-of-plane dimerized [Mn(2)(5-MeOsaltmen)2]2+ moiety. However, their packing arrangements are completely different. Whereas complex 1 is found to be relatively isolated, strong intermolecular dimerization of the DCNNQI moieties (with the nearest contact being approximately 3.0 A) is observed in 2, forming a one-dimensional chain of [-Mn(III)-(O)2-Mn(III)-(DCNNQI.-)2-](infinity). The magnetic susceptibility of 1 can be modeled with an [S = 1/2, 2, 2, 1/2] four-spin system including strong antiferromagnetic Mn(III)/DCNNQI radical coupling (J(Mn/rad)/kB = -23 K) and ferromagnetic Mn(III)/Mn(III) coupling through the biphenolate bridge (J(Mn/Mn)/kB = +2.0 K). These interactions lead to an ST = 3 ground state that possesses significant uniaxial anisotropy (D(S=3)/kB = -2.1 K). Low-temperature ac and dc magnetic data of 1 reveal its single-molecule magnet behavior with quantum tunneling of the magnetization. By contrast, 2 possesses the diamagnetic ground state induced by dominating Mn(III)-Mn(III) antiferromagnetic interactions mediated by the diamagnetic DCNNQI dimers and/or pi-pi contact along the b axis.  相似文献   

5.
The reaction of 2-(hydroxyethyl)pyridine (hepH) with a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3]ClO4 and [Mn3O(O2CMe)6(py)3] in MeCN afforded the new mixed-valent (16Mn(III), 2Mn(II)), octadecanuclear complex [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 20% yield. Complex 1 crystallizes in the triclinic space group P. Direct current magnetic susceptibility studies in a 1.0 T field in the 5.0-300 K range, and variable-temperature variable-field dc magnetization studies in the 2.0-4.0 K and 2.0-5.0 T ranges were obtained on polycrystalline samples. Fitting of magnetization data established that complex 1 possesses a ground-state spin of S = 13 and D = -0.18 K. This was confirmed by the value of the in-phase ac magnetic susceptibility signal. Below 3 K, the complex exhibits a frequency-dependent drop in the in-phase signal, and a concomitant increase in the out-of-phase signal, consistent with slow magnetization relaxation on the ac time scale. This suggests the complex is a single-molecule magnet (SMM), and this was confirmed by hysteresis loops below 1 K in magnetization versus dc field sweeps on a single crystal. Alternating current and direct current magnetization data were combined to yield an Arrhenius plot from which was obtained the effective barrier (U(eff)) for magnetization reversal of 21.3 K. Below 0.2 K, the relaxation becomes temperature-independent, consistent with relaxation only by quantum tunneling of the magnetization (QTM) through the anisotropy barrier via the lowest-energy MS = +/-13 levels of the S = 13 spin manifold. Complex 1 is thus the SMM with the largest ground-state spin to display QTM.  相似文献   

6.
Dimeric [Mn(salpn)NCS](2)(1) and polymeric [Mn(salpn)NCS](n)(2) are formed by the reaction of Mn(CH(3)CO(2))(2).4H(2)O, the schiff base, and thiocyanate. The formation of the two polymorphic forms is solvent and temperature dependent. 1: orthorhombic, space group Pbca, with a = 12.573(2) A, b = 13.970(7) A, c = 18.891(9) A, and Z = 8. 2: orthorhombic, space group Pna2(1), with a = 12.5277(14) A, b = 11.576(2) A, c = 11.513(2) A, and Z = 4. The dimers in 1 are held together by weak noncovalent S...pi (phenyl) interactions leading to a chain along the a-axis. Each monomeric unit of the polymer in 2 is related to its adjacent ones by a 2-fold screw axis leading to a helix along the c-axis. The exchange coupling is nondetectable in the dimer. The magnetic susceptibility of the helical chain fits a classical chain law with J = -3.2 cm(-1) and shows a weak ferromagnetic ordering below 7 K due to spin canting effects.  相似文献   

7.
We herein present the synthesis, crystal structure, and magnetic properties of a new heterometallic chain of MnIII and NiII ions, [Mn2(saltmen)2Ni(pao)2(py)2](ClO4)2 (1) (saltmen2- = N,N'-(1,1,2,2-tetramethylethylene) bis(salicylideneiminate) and pao- = pyridine-2-aldoximate). The crystal structure of 1 was investigated by X-ray crystallographic analysis: compound 1 crystallized in monoclinic, space group C2/c (No. 15) with a = 21.140(3) A, b = 15.975(1) A, c = 18.6212(4) A, beta = 98.0586(4) degrees , V = 6226.5(7) A3, and Z = 4. This compound consists of two fragments, the out-of-plane dimer [Mn2(saltmen)2]2+ as a coordination acceptor building block and the neutral mononuclear unit [Ni(pao)2(py)2] as a coordination donor building block, forming an alternating chain having the repeating unit [-Mn-(O)2-Mn-ON-Ni-NO-]n. In the crystal structure, each chain is well separated with a minimum intermetallic distance between Mn and Ni ions of 10.39 A and with the absence of interchain pi overlaps between organic ligands. These features ensure a good magnetic isolation of the chains. The dc and ac magnetic measurements were performed on both the polycrystalline sample and the aligned single crystals of 1. Above 30 K, the magnetic susceptibility of this one-dimensional compound was successfully described in a mean field approximation as an assembly of trimers (Mn...Ni...Mn) with a NiII...MnIII antiferromagnetic interaction (J = -21 K) connected through a ferromagnetic MnIII...MnIII interaction (J'). However, the mean field theory fails to describe the magnetic behavior below 30 K emphasizing the one-dimensional magnetic character of the title compound. Between 5 and 15 K, the susceptibility in the chain direction was fitted to a one-dimensional Ising model leading to the same value of J'. Hysteresis loops are observed below 3.5 K, indicating a magnet-type behavior. In the same range of temperature, combined ac and dc measurements show a slow relaxation of the magnetization. This result indicates the presence of a metastable state without magnetic long-range order. This material is the first experimental design of a heterometallic chain with ST = 3 magnetic units showing a "single-chain magnet" behavior predicted in 1963 by R. J. Glauber for an Ising one-dimensional system. This work opens new perspectives for one-dimensional systems to obtain high temperature metastable magnets by combining high spin magnetic units, strong interunit interactions, and uniaxial anisotropy.  相似文献   

8.
The preparation, X-ray structure, and detailed physical characterization are presented for a new type of single-molecule magnet [Mn4(O2CMe)2(pdmH)6](ClO4)2 (1). Complex 1.2MeCN.Et2O crystallizes in the triclinic space group P1, with cell dimensions at 130 K of a = 11.914(3) A, b = 15.347(4) A, c = 9.660(3) A, alpha = 104.58(1) degree, beta = 93.42(1) degree, gamma = 106.06(1) degree, and Z = 1. The cation lies on an inversion center and consists of a planar Mn4 rhombus that is mixed-valent, MnIII2MnII2. The pdmH- ligands (pdmH2 is pyridine-2,6-dimethanol) function as either bidentate or tridentate ligands. The bridging between Mn atoms is established by either a deprotonated oxygen atom of a pdmH- ligand or an acetate ligand. The solvated complex readily loses all acetonitrile and ether solvate molecules to give complex 1, which with time becomes hydrated to give 1.2.5H2O. Direct current and alternating current magnetic susceptibility data are given for 1 and 1.2.5H2O and indicate that the desolvated complex has a S = 8 ground state, whereas the hydrated 1.2.5H2O has a S = 9 ground state. Ferromagnetic interactions between MnIII-MnII and MnIII-MnIII pairs result in parallel spin alignments of the S = 5/2 MnII and S = 2 MnIII ions. High-frequency EPR spectra were run for complex 1.2.5H2O at frequencies of 218, 328, and 436 GHz in the 4.5-30 K range. A magnetic-field-oriented polycrystallite sample was employed. Fine structure is clearly seen in this parallel-field EPR spectrum. The transition fields were least-squares-fit to give g = 1.99, D = -0.451 K, and B4 degrees = 2.94 x 10(-5) K for the S = 9 ground state of 1.2.5H2O. A molecule with a large-spin ground state with D < 0 can function as a single-molecule magnet, as detected by techniques such as ac magnetic susceptibility. Out-of-phase ac signals (chi' M) were seen for complexes 1 and 1.2.5H2O to show that these complexes are single-molecule magnets. A sample of 1 was studied by ac susceptibility in the 0.4-6.4 K range with the ac field oscillating at frequencies in the 1.1-1000 Hz range. A single peak in chi' M vs temperature plots was seen for each frequency; the temperature of the chi' M peak varies from 2.03 K at 995 Hz to 1.16 K at 1.1 Hz. Magnetization relaxation rates were evaluated in this way. An Arrhenius plot gave an activation energy of 17.3 K, which, as expected, is less than the 22.4 K value calculated for the thermodynamic barrier for magnetization direction reversal for an S = 8 complex with D = -0.35 K. The 1.2.5H2O complex with an S = 9 ground state has its chi' M peaks at higher temperatures.  相似文献   

9.
[Mn4(hmp)6(H2O)2(NO3)2](NO3)2.2.5H2O (1) has been synthesized from the reaction of 2-hydroxymethylpyridine (Hhmp) with Mn(NO3)2.4H2O in the presence of tetraethylammonium hydroxide. 1 crystallizes in the triclinic P space group with two crystallographically independent centrosymmetrical [Mn4(hmp)6(H2O)2(NO3)2]2+ complexes in the packing structure. Four Mn ions are arranged in a double-cuboidal fashion where outer Mn2+ are heptacoordinated and inner Mn3+ are hexacoordinated. dc magnetic measurements show that both Mn2+...Mn3+ and Mn3+...Mn3+ interactions are ferromagnetic with J(wb)/k(B) = +0.80(5) K, and J(bb)/k(B) = +7.1(1) K, respectively, leading to an S(T) = 9 ground state. Combined ac and dc measurements reveal the single-molecule magnet (SMM) behavior of 1 with both thermally activated and ground-state tunneling regimes, including quantum phase interference. In the thermally activated regime, the characteristic relaxation time (tau) of the system follows an Arrhenius law with tau0 = 6.7 x 10(-)(9) s and delta(eff)/k(B) = 20.9 K. Below 0.34 K, tau saturates indicating that the quantum tunneling of the magnetization becomes the dominant relaxation process as expected for SMMs. Down to 0.04 K, field dependence of the magnetization measured using the mu-SQUID technique shows the presence of very weak inter-SMM interactions (zJ'/k(B) approximately -1.5 x 10(-3) K) and allows an estimation of D/k(B) at -0.35 K. Quantum phase interference has been used to confirm the D value and to estimate the transverse anisotropic parameter to E/k(B) = +0.083 K and the ground-state tunnel splitting delta(LZ) = 3 x 10(-7) K at H(trans) = 0 Oe. These results rationalize the observed tunneling time (tau(QTM)) and the effective energy barrier (delta(eff)).  相似文献   

10.
The assembly reaction of a Mn(III) salen-type dimeric complex, [MnIII2(saltmen)2(H2O)2](ClO4)2 (saltmen2- = N,N'-(1,1,2,2-tetramethylethylene)bis(salycylideneiminate)), and a Ni(II) oximato complex, [Ni(II)(pao)2(phen)] (pao- = pyridine-2-aldoximate; phen = 1,10-phenanthroline), in the presence of NaBPh4 yielded a heterometallic chain of [MnIII2(saltmen)2NiI)(pao)2(phen)](BPh4)2 (Mn2Ni-BPh4) having a [-Mn(III)-ON-Ni(II)-NO-Mn(III)-(OPh)2-] repeating unit surrounded by a "zeolite-like" network of BPh4- anions. Thanks to such bulky ion-walls, each chain is not only structurally separated with a nearest inter-chain metalmetal distance of 14.4 A (MnNi) but also magnetically extremely well isolated. This magnetic isolation and the ferromagnetic interactions between S = 3 anisotropic units constituting the chain play key roles that induce single-chain magnet behavior in this system.  相似文献   

11.
Mn(III)-Ni(II)-Mn(III) linear-type trinuclear complexes bridged by oximate groups were selectively synthesized by the assembly reaction of [Mn2(5-Rsaltmen)2(H2O)2](ClO4)2 (5-Rsaltmen2-=N,N'-(1,1,2,2-tetramethylethylene) bis(5-R-salicylideneiminate); R=Cl, Br) with [Ni(pao)2(phen)] (pao-=pyridine-2-aldoximate; phen=1,10-phenanthroline) in methanol/water: [Mn2(5-Rsaltmen)2Ni(pao)2(phen)](ClO4)2 (R=Cl, 1; R=Br, 2). Structural analysis revealed that the [Mn(III)-ON-Ni(II)-NO-Mn(III)] skeleton of these trimers is in every respect similar to the repeating unit found in the previously reported series of 1D materials [Mn2(saltmen)2Ni(pao)2(L1)2](A)(2) (L(1)=pyridine, 4-picoline, 4-tert-butylpyridine, N-methylimidazole; A=ClO4-, BF4-, PF6-, ReO4-). Recently, these 1D compounds have attracted a great deal of attention for their magnetic properties, since they exhibit slow relaxation of the magnetization (also called single-chain magnet (SCM) behavior). This unique magnetic behavior was explained in the framework of Glauber's theory, generalized for chains of ferromagnetically coupled anisotropic spins. Thus, in these 1D compounds, the [Mn(III)-ON-Ni(II)-NO-Mn(III)] unit was considered as an S(T)=3 anisotropic spin. Direct-current magnetic measurements on 1 and 2 confirm their S(T)=3 ground state and strong uniaxial anisotropy (D/k(B) approximately -2.4 K), in excellent agreement with the magnetic characteristic deduced in the study on the SCM series. The ac magnetic susceptibility of these trimers is strongly frequency-dependent and characteristic of single-molecule magnet (SMM) behavior. The relaxation time tau shows a thermally activated (Arrhenius) behavior with tau0 approximately 1x10(-7) s and Delta(eff)/k(B) approximately 18 K. The effective energy barrier for reversal of the magnetization Delta(eff) is consistent with the theoretical value (21 K) estimated from |D| S2T. The present results reinforce consistently the interpretation of the SCM behavior observed in the [Mn2(saltmen)2Ni(pao)2(L1)2](A)2 series and opens new perspectives to design single-chain magnets.  相似文献   

12.
The syntheses, structures, and magnetic properties of two new Mn7 complexes containing phenylseleninate ligands are reported. [Mn7O8(O2SePh)8(O2CMe)(H2O)] (1) and [Mn7O8(O2SePh)9(H2O)] (2) were both prepared by the reaction of 18 equiv of benzeneseleninic acid (PhSeO2H) with [Mn12O12(O2CMe)16(H2O)4] in MeCN. Complex 1 x 6MeCN crystallizes in the triclinic space group P, and complex 2 x 2CH2Cl2 crystallizes in the monoclinic space group P2(1)/m. Both compounds possess an unprecedented [Mn7O8]9+ core comprising a central [MnIII3(micro3-O)4]+ unit attached to [MnIV2(micro-O)2]4+ and [MnIV2(micro-O)(micro3-O)]4+ units on either side. In each cluster, the PhSeO2- groups function as bridging ligands between adjacent Mn centers. The structure reveals strong Se.O intermolecular contacts between Mn7 units to give a one-dimensional chain structure, with weak interchain interactions. Solid-state DC magnetic susceptibility measurements of complexes 1 and 2 reveal that they have very similar properties, and detailed studies on 1 by AC susceptibility measurements confirm an S = 2 ground-state spin value. In addition, out-of-phase AC signals are observed, suggesting slow magnetization relaxation. Magnetization versus DC field sweeps down to 0.04 K reveals hysteresis loops, but the temperature dependence of the coercivity is not what is expected of a single-molecule magnet. Instead, the behavior is due to single-chain magnetism, albeit with weak antiferromagnetic interactions between the chains, with the barrier to relaxation arising from a combination of molecular anisotropy and ferromagnetic intermolecular exchange interactions mediated by the Se...O contacts. An Arrhenius plot was constructed from the magnetization versus time decay data. The thermally activated region at > 0.5 K gave an effective relaxation barrier (Ueff) of 14.2 K. Below approximately 0.1 K, the relaxation is independent of temperature, which is characteristic of magnetization quantum tunneling through the anisotropy barrier. These Mn7 compounds are thus the first single-chain magnets to comprise polynuclear metal clusters and also the first for which the temperature-independent relaxation characteristic of tunneling has been identified. The work also emphasizes that out-of-phase AC signals for ostensibly molecular compounds are not sufficient proof by themselves of a single-molecule magnet.  相似文献   

13.
A carboxy-substituted alkylammonium salt, namely, (4-carboxybenzyl)tributylammonium hexafluorophosphate, ZHPF(6), was prepared and used as incoming carboxylate ligand in a ligand-exchange reaction with [Mn(12)O(12)(O(2)CCH(3))(16)(H(2)O)(4)] (1) to afford a new Mn(12) single-molecule magnet (SMM), [Mn(12)O(12)(Z)(16)(H(2)O)(4)][PF(6)](16) (2), bearing 16 cationic units appended in the periphery. This compound behaves as a single-molecule magnet, exhibiting an out-of-phase ac magnetic susceptibility chi' '(M) signal that shows a single maximum in the 3.1-5.4 K temperature range. The frequency dependence of the maximum follows an Arrhenius law, with an effective energy barrier for reorientation of the spins U(eff) = 53 K. The reduced magnetization versus H/T data at different temperatures were fitted by using a Hamiltonian containing Zeeman, axial, and quartic zero-field splitting terms. The expected spin ground state S = 10 was found, and the least-squares fit afforded the following zero-field-splitting parameters: D = -0.44 cm(-1); B(4)(0) = 0.12 x 10(-4) cm(-1). Magnetization hysteresis loops were observed for 2, with a coercive field H(c) = 0.34 T. Complex 2 has been used as countercation in the preparation of a family of hybrid salts containing different polyoxometalate anions, [Mn(12)O(12)(Z)(16)(H(2)O)(4)][W(6)O(19)](8) (3), [Mn(12)O(12)(Z)(16)(H(2)O)(4)][PW(12)O(40)](16/3) (4), [Mn(12)O(12)(Z)(16)(H(2)O)(4)][(H(3)O)PW(11)O(39)Ni](4) (5), and [Mn(12)O(12)(Z)(16)(H(2)O)(4)][(H(3)O)PW(11)O(39)Co](4) (6). 3-6 exhibit typical magnetic hysteresis loops with higher coercive fields for the complexes containing diamagnetic polyanions: H(c) = 0.075 T (3), 0.046 T (4), 0.016 T (5), and 0.0075 T (6). However, the dynamics of the magnetic behavior below the blocking temperature is similar in all compounds. Broad frequency-dependent out-of-phase ac susceptibility signals are observed, presumably due to mixtures of different Jahn-Teller isomers. Their temperature dependence is also typical of an activated-energy process, with effective energy barriers in the 50 K range, irrespective of the nature of the polyoxoanion (diamagnetic, as in 3 and 4, or paramagnetic, as in 5 and 6). These findings seem to discard any influence of the polyoxometalate in the magnetic properties of the SMM.  相似文献   

14.
The reaction of N-(2-hydroxy-5-nitrobenzyl)iminodiethanol (=H3(5-NO2-hbide)) with Mn(OAc)2* 4 H2O in methanol, followed by recrystallization from 1,2-dichloroethane, yielded a wheel-shaped single-molecule magnet (SMM) of [MnII 3MnIII 4(5-NO2-hbide)6].5 C2H4Cl2 (1). In 1, seven manganese ions are linked by six tri-anionic ligands and form the wheel in which the two manganese ions on the rim and the one in the center are MnII and the other four manganese ions are MnIII ions. Powder magnetic susceptibility measurements showed a gradual increase with chimT values as the temperature was lowered, reaching a maximum value of 53.9 emu mol(-1) K. Analyses of magnetic susceptibility data suggested a spin ground state of S=19/2. The zero-field splitting parameters of D and B 0 4 were estimated to be -0.283(1) K and -1.64(1)x10(-5) K, respectively, by high-field EPR measurements (HF-EPR). The anisotropic parameters agreed with those estimated from magnetization and inelastic neutron scattering experiments. AC magnetic susceptibility measurements showed frequency-dependent in- and out-of-phase signals, characteristic data for an SMM, and an Arrhenius plot of the relaxation time gave a re-orientation energy barrier (DeltaE) of 18.1 K and a pre-exponential factor of 1.63x10(-7) s. Magnetization experiments on aligned single crystals below 0.7 K showed a stepped hysteresis loop, confirming the occurrence of quantum tunneling of the on magnetization (QTM). QTM was, on the other hand, suppressed by rapid sweeps of the magnetic field even at 0.5 K. The sweep-rate dependence of the spin flips can be understood by considering the Landau-Zener-Stückelberg (LZS) model.  相似文献   

15.
The reaction between oxide-centered, triangular [MnIII3O(O2CR)6(py)3](ClO4) (R = Me (1), Et (2), Ph (3)) compounds and methyl 2-pyridyl ketone oxime (mpkoH) affords a new family of Mn/carboxylato/oximato complexes, [MnIII3O(O2CR)3(mpko)3](ClO4) [R = Me (4), Et (5), and Ph (6)]. As in 1-3, the cations of 4-6 contain an [MnIII3(mu3-O)]7+ triangular core, but with each Mn2 edge now bridged by an eta1:eta1:mu-RCO2- and an eta1:eta1:eta1:mu-mpko- group. The tridentate binding mode of the latter causes a buckling of the formerly planar [MnIII3(mu3-O)]7+ core, resulting in a relative twisting of the three MnIII octahedra and the central O2- ion now lying approximately 0.3 A above the Mn3 plane. This structural distortion leads to ferromagnetic exchange interactions within the molecule and a resulting S = 6 ground state. Fits of dc magnetization data for 4-6 collected in the 1.8-10.0 K and 10-70 kG ranges confirmed S = 6 ground states, and gave the following D and g values: -0.34 cm(-1) and 1.92 for 4, -0.34 cm(-1) and 1.93 for 5, and -0.35 cm(-1) and 1.99 for 6, where D is the axial zero-field splitting (anisotropy) parameter. Complexes 4-6 all exhibit frequency-dependent out-of-phase (chi" M) ac susceptibility signals suggesting them possibly to be single-molecule magnets (SMMs). Relaxation rate vs T data for complex 4 down to 1.8 K obtained from the chi" M vs T studies were supplemented with rate vs T data measured to 0.04 K via magnetization vs time decay studies, and these were used to construct Arrhenius plots from which was obtained the effective barrier to relaxation (Ueff) of 10.9 K. Magnetization vs dc field sweeps on single-crystals of 4.3CH2Cl2 displayed hysteresis loops exhibiting steps due to quantum tunneling of magnetization (QTM). The loops were essentially temperature-independent below approximately 0.3 K, indicating only ground-state QTM between the lowest-lying Ms = +/-6 levels. Complexes 4-6 are thus confirmed as the first triangular SMMs. High-frequency EPR spectra of single crystals of 4.3CH2Cl2 have provided precise spin Hamiltonian parameters, giving D = -0.3 cm(-1), B40 = -3 x 10(-5) cm(-1), and g = 2.00. The spectra also suggest a significant transverse anisotropy of E > or = 0.015 cm(-1). The combined work demonstrates the feasibility that structural distortions of a magnetic core imposed by peripheral ligands can "switch on" the properties of an SMM.  相似文献   

16.
The syntheses, structures, and magnetic properties of the complexes [MnIV4MnIII10MnII2O2(OCH3)12(tmp)8(O2CCH3)10].3Et2O (1.3Et2O), [MnIV2MnIII18MnII2O6(OCH3)14(O2CCH3)16(tmp)8(HIm)2].2CH3OH (2.2CH3OH), and [MnIV2MnIII18MnII2O6(OCH3)14(O2CCH3)16(Br-mp)8(HIm)2].2C6H14.5CH3OH (3.2C6H14.5CH3OH) are reported. The unusual wheel-like complexes were prepared by the treatment of [Mn3O(O2CCH3)6(HIm)3](O2CCH3) (HIm = imidazole) with 1,1,1-tris-(hydroxymethyl)propane (H3tmp) (1 and 2) or 2-(bromomethyl)-2-(hydroxymethyl)-1,3-propanediol (Br-mpH3) (3) in the presence of sodium methoxide (NaOCH3, 2, and 3) in CH3OH. Complex 1.3Et2O crystallizes in the triclinic space group P, while complexes 2.2CH3OH and 3.2C6H14.5CH3OH crystallize in the orthorhombic space group Pbca. Direct current magnetic susceptibility data, collected for 1-3 in the respective 1.8-300 K and 0.1-7 T temperature and magnetic-field ranges, afford spin ground-state values of S = 14 +/- 1 for complex 1 and S = 9 +/- 1 for complexes 2 and 3. Alternating current susceptibility measurements performed on all three complexes in the 1.8-10 K temperature range in a 3.5 G oscillating field at frequencies between 50 and 1000 Hz reveal out-of-phase chi"M signals below approximately 3 K. Single-crystal hysteresis loop and relaxation measurements confirm single-molecule magnetism behavior.  相似文献   

17.
The syntheses, structures, and magnetic properties are reported of the mixed-metal complexes [Ce4Mn10O10(OMe)6(O2CPh)16(NO3)2(MeOH)2(H2O)2] (1) and [Th6Mn10O22(OH)2(O2CPh)16-(NO3)2(H2O)8] (2), which were both prepared by the reaction of (NBun4)[Mn4O2(O2CPh)9(H2O)] (3) with a source of the heterometal in MeCN/MeOH. Complexes 1 and 2 crystallize in the monoclinic space group C2/c and the triclinic space group P, respectively. Complex 1 consists of 10 MnIII, 2 CeIII, and 2 CeIV atoms and possesses a very unusual tubular [Ce4Mn10O10(OMe)6]18+ core. Complex 2 consists of 10 MnIV and 6 ThIV atoms and possesses a [Th6Mn10O22(OH)2]18+ core with the metal atoms arranged in layers with a 2:3:6:3:2 pattern. Peripheral ligation around the cores is provided by 16 bridging benzoates, 2 chelating nitrates, and either (i) 2 each of terminal H2O and MeOH groups in 1 or (ii) 8 terminal H2O groups in 2. Complex 1 is the largest mixed-metal Ce/Mn cluster and the first 3d/4f cluster with mixed-valency in its lanthanide component, while complex 2 is the first Th/Mn cluster and the largest mixed transition metal/actinide cluster to date. Solid-state dc and ac magnetic susceptibility measurements on 1 and 2 establish that they possess S = 4 and 3 ground states, respectively. Ac susceptibility studies on 1 revealed nonzero frequency-dependent out-of-phase (chiM' ') signals at temperatures below 3 K; complex 2 displays no chiM' ' signals. However, single-crystal magnetization vs dc field scans at variable temperatures and variable sweep-rates down to 0.04 K on 1 revealed no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by hydrogen bonds involving CeIII-bound ligands. Complex 1 is thus concluded not to be a single-molecule magnet (SMM), and the combined results thus represent a caveat against taking such ac signals as sufficient proof of a SMM.  相似文献   

18.
The reaction of manganese(III) Schiff bases of the type salen(2-) (N,N'-ethylenebis(salicylideneaminato)) with X-substituted (X = CH(3), Cl) pyridinecarboxamide dicyanoferrite(III) [Fe(X-bpb)(CN)(2)](-) gave rise to a series of cyanide-bridged Mn(6)Fe(6) molecular wheels, [Mn(III)(salen)](6)[Fe(III)(bpmb)(CN)(2)](6) x 7H(2)O (1), [Mn(salen)](6)[Fe(bpClb)(CN)(2)](6) x 4H(2)O x 2CH(3)OH (2), [Mn(salen)](6)[Fe(bpdmb)(CN)(2)](6) x 10H(2)O x 5CH(3)OH (3), [Mn(5-Br(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 24H(2)O x 8CH(3)CN (4), and [Mn(5-Cl(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 25H(2)O x 5CH(3)CN (5). Compared with [Fe(bpb)(CN)(2)](-), which always gives rise to 1D or polynuclear species when reacting with Mn(III) Schiff bases, the introduction of substituents (X) to the bpb(2-) ligand has a driving force in formation of the novel wheel structure. Magnetic studies reveal that high-spin ground state S = 15 is present in the wheel compounds originated from the ferromagnetic Mn(III)-Fe(III) coupling. For the first time, the quantum Monte Carlo study has been used to modulate the magnetic susceptibility of the huge Mn(6)Fe(6) metallomacrocycles, showing that the magnetic coupling constants J range from 3.0 to 8.0 K on the basis of the spin Hamiltonian [Formula: see text]. Hysteresis loops for 1 have been observed below 0.8 K, indicative of a single-molecule magnet with a blocking temperature (TB) of 0.8 K. Molecular wheels 2-5 exhibit frequency dependence of alternating-current magnetic susceptibility under zero direct-current magnetic field, signifying the slow magnetization relaxation similar to that of 1. Significantly, an unprecedented archlike Mn(2)Fe(2) cluster, [Mn(5-Cl(salpn))](2)[Fe(bpmb)(CN)(2)](2) x 3H(2)O x CH(3)CN (6), has been isolated as an intermediate of the Mn(6)Fe(6) wheel 5. Ferromagnetic Mn(III)-Fe(III) coupling results in a high-spin S = 5 ground state. Combination of the high-spin state and a negative magnetic anisotropy (D) results in the observation of slow magnetization relaxation in 6.  相似文献   

19.
The reaction of [Mn3O(O2CR)6(py)3](ClO4) (R = Me, Et) with methyl 2-pyridyl ketone oxime (mpkoH) in a 1:3 molar ratio in MeOH/MeCN leads to [Mn3O(O2CR)3(mpko)3](ClO4) in 80-90% isolated yield. Ferromagnetic exchange interactions between the three MnIII ions in the nonplanar [MnIII3O]7+ triangular core lead to a spin ground state of S = 6; single-crystal studies reveal the temperature and sweep rate dependent hysteresis loops expected for a single-molecule magnet.  相似文献   

20.
The largest single-molecule magnet (SMM) to date has been prepared and studied. Recrystallization of known [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(H(2)O)(4)] (1; 8Mn(III), 4Mn(IV)) from CH(2)Cl(2)/MeNO(2) causes its conversion to [Mn(30)O(24)(OH)(8)(O(2)CCH(2)Bu(t))(32)(H(2)O)(2)(MeNO(2))(4)] (2; 3Mn(II), 26Mn(III), Mn(IV)). The structure of 2 consists of a central, near-linear [Mn(4)O(6)] backbone, to either side of which are attached two [Mn(13)O(9)(OH)(4)] units. Peripheral ligation around the resulting [Mn(30)O(24)(OH)(8)] core is by 32 Bu(t)CH(2)CO(2)(-), 2 H(2)O, and 4 MeNO(2) groups. The molecule has crystallographically imposed C(2) symmetry. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-0.4 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 5, D = -0.51 cm(-1) = -0.73 K, and g = 2.00, where D is the axial zero-field splitting parameter. AC susceptibility measurements in the 1.8-7.0 K range in a zero DC field and a 3.5 G AC field oscillating at frequencies in the 50-997 Hz range revealed a frequency-dependent out-of-phase (chi(M)') signal below 3 K, indicating 2 to be a single-molecule magnet (SMM), the largest yet obtained. Magnetization versus DC field sweeps show hysteresis loops but no clear steps characteristic of quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot that revealed temperature-independent relaxation below 0.3 K. The fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 15 K, where U(eff) is the effective relaxation barrier. Resonant QTM was confirmed from the appearance of a "quantum hole" when the recent quantum hole digging method was employed. The combined results demonstrate that SMMs can be prepared that are significantly larger than any known to date and that this new, large Mn(30) complex still demonstrates quantum behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号