首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We study the Euler-Poisson equations of describing the evolution of the gaseous star in astrophysics. Firstly, we construct a family of analytical blowup solutions for the isothermal case in R2. Furthermore the blowup rate of the above solutions is also studied and some remarks about the applicability of such solutions to the Navier-Stokes-Poisson equations and the drift-diffusion model in semiconductors are included. Finally, for the isothermal case (γ=1), the result of Makino and Perthame for the tame solutions is extended to show that the life span of such solutions must be finite if the initial data is with compact support.  相似文献   

3.
该文研究等温气流整体解的存在性.我们用补偿列紧理论证明了逼近解的强收敛性.我们不仅对弱熵,而且对强熵也建立了交换关系式.在证明中我们不需要强熵的H-1紧性.  相似文献   

4.
In this paper, the large time behavior of spherically symmetric weak solutions to the multi-dimensional isothermal Euler-Poisson system in an annulus is considered. When space dimension N=2, it is shown that the weak solutions converge to the unique stationary solution exponentially in time. No smallness and regularity conditions are assumed.  相似文献   

5.
In this paper, we use the compensated compactness method with BV estimates on the Riemann invariants to obtain the global existence of bounded entropy weak solutions for the Cauchy problem of a symmetric system of Keyfitz-Kranzer type.  相似文献   

6.
This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.  相似文献   

7.
** Email: guo_zhenhua{at}iapcm.ac.cn*** Email: jiang{at}iapcm.ac.cn We investigate the self-similar solutions to the isothermalcompressible Navier–Stokes equations. The aim of thispaper is to show that there exist neither forward nor backwardself-similar solutions with finite total energy. This generalizesthe results for the incompressible case in Neas, J., Rika, M.& verák, V. (1996, On Leray's self-similar solutionsof the Navier-Stokes equations. Acta. Math., 176, 283–294),and is consistent with the (unproved) existence of regular solutionsglobally in time for the compressible Navier–Stokes equations.  相似文献   

8.
In this paper we obtain the boundedness of solutions to a time-dependent semiconductor model with variable electron mobility. The proof is based upon an interpolation inequality which is of interest on its own right.  相似文献   

9.
In this paper, we consider the Euler-Poisson equations governing the evolution of the gaseous stars with the Poisson equation describing the energy potential for the self-gravitating force. By assuming that the initial density is of compact support in , we first give a family of blowup solutions for non-isentropic polytropic gas when γ=(2N−2)/N which generalizes the known result for the isentropic case. Then we extend the previous result on non-blowup phenomena to the case when (2N−2)/N?γ<2 in N-dimensional space. Here γ is the adiabatic gas constant.  相似文献   

10.
In this article, two relaxation time limits, namely, the momentum relaxation time limit and the energy relaxation time limit are considered. By the compactness argument, it is obtained that the smooth solutions of the multidimensional nonisentropic Euler-Poisson problem converge to the solutions of an energy transport model or a drift diffusion model, respectively, with respect to different time scales.  相似文献   

11.
The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.  相似文献   

12.
In this article, we study the 1-dimensional bipolar quantum hydrodynamic model for semiconductors in the form of Euler-Poisson equations, which contains dispersive terms with third order derivations. We deal with this kind of model in one dimensional case for general perturbations by constructing some correction functions to delete the gaps between the original solutions and the diffusion waves in L2-space, and by using a key inequality we prove the stability of diffusion waves. As the same time, the convergence rates are also obtained.  相似文献   

13.
14.
The present paper proves the existence and the asymptotic stability of a stationary solution to the initial boundary value problem for a quantum hydrodynamic model of semiconductors over a one-dimensional bounded domain. We also discuss on a singular limit from this model to a classical hydrodynamic model without quantum effects. Precisely, we prove that a solution for the quantum model converges to that for the hydrodynamic model as the Planck constant tends to zero. Here we adopt a non-linear boundary condition which means quantum effect vanishes on the boundary. In the previous researches, the existence and the asymptotic stability of a stationary solution are proved under the assumption that a doping profile is flat, which makes the stationary solution also flat. However, the typical doping profile in actual devices does not satisfy this assumption. Thus, we prove the above theorems without this flatness assumption. Firstly, the existence of the stationary solution is proved by the Leray-Schauder fixed-point theorem. Secondly, we show the asymptotic stability theorem by using an elementary energy method, where the equation for an energy form plays an essential role. Finally, the classical limit is considered by using the energy method again.  相似文献   

15.
This paper regards the existence of weak solutions for a quasilinear wave equation of Klein-Gordon and Sine-Gordon type with the presence of a linear damping term and the relaxation to the reaction-diffusion equation when the momentum relaxation time tends to zero. In the limit process is fundamental the celebrated Div-curl Lemma of Tartar and Murat. Received February 5, 1996  相似文献   

16.
17.
In the first part of this paper we define solutions for certain nonlinear equations defined by accretive operators, “dissipative solution”. This kind of solution is equivalent to the viscosity solutions for Hamilton-Jacobi equations and to the entropy solutions for conservation laws.In this paper we use dissipative solutions to obtain several relaxation limits for systems of semilinear transport equations and quasilinear conservation laws. These converge to diffusion second-order equations and in one case to a single conservation law. The relaxation limit is obtained using a version of the perturbed test function method to pass to the limit. This guarantees existence for the considered equations.  相似文献   

18.
A plate equation with critical exponent in locally uniform spaces with a coefficient β(x) belonging to the locally uniform spaces is studied. This equation is shown to generate a dissipative semigroup in locally uniform spaces , which possesses global attractors in weighted spaces .  相似文献   

19.
In this paper, we study the global L solutions for the Cauchy problem of nonsymmetric system (1.1) of Keyfitz-Kranzer type. When n=1, (1.1) is the Aw-Rascle traffic flow model. First, we introduce a new flux approximation to obtain a lower bound ρε,δ?δ>0 for the parabolic system generated by adding “artificial viscosity” to the Aw-Rascle system. Then using the compensated compactness method with the help of L1 estimate of wε,δx(⋅,t) we prove the pointwise convergence of the viscosity solutions under the general conditions on the function P(ρ), which includes prototype function , where γ∈(−1,0)∪(0,∞), A is a constant. Second, by means of BV estimates on the Riemann invariants and the compensated compactness method, we prove the global existence of bounded entropy weak solutions for the Cauchy problem of general nonsymmetric systems (1.1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号