首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concerns a class of stochastic differential equations driven by fractional Brownian motion. The existence and uniqueness of almost automorphic solutions in distribution are established provided the coefficients satisfy some suitable conditions. To illustrate the results obtained in the paper, a stochastic heat equation driven by fractional Brownian motion is considered. 1 1 The abstract section is available on the university repository site at http://math.dlut.edu.cn/info/1019/4511.htm .
  相似文献   

2.
We study the approximation of stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H>1/2H>1/2. For the mean-square error at a single point we derive the optimal rate of convergence that can be achieved by arbitrary approximation methods that are based on an equidistant discretization of the driving fractional Brownian motion. We find that there are mainly two cases: either the solution can be approximated perfectly or the best possible rate of convergence is n−H−1/2nH1/2, where nn denotes the number of evaluations of the fractional Brownian motion. In addition, we present an implementable approximation scheme that obtains the optimal rate of convergence in the latter case.  相似文献   

3.
In this paper, we investigate the chaotic behavior of ordinary differential equations with a homoclinic orbit to a saddle fixed point under an unbounded random forcing driven by a Brownian motion. We prove that, for almost all sample paths of the Brownian motion in the classical Wiener space, the forced equation admits a topological horseshoe of infinitely many branches. This result is then applied to the randomly forced Duffing equation and the pendulum equation.  相似文献   

4.
5.
In this note, we prove an existence and uniqueness result of solution for stochastic differential delay equations with hereditary drift driven by a fractional Brownian motion with Hurst parameter H > 1/2. Then, we show that, when the delay goes to zero, the solutions to these equations converge, almost surely and in L p , to the solution for the equation without delay. The stochastic integral with respect to the fractional Brownian motion is a pathwise Riemann–Stieltjes integral.  相似文献   

6.
In this article we introduce cylindrical fractional Brownian motions in Banach spaces and develop the related stochastic integration theory. Here a cylindrical fractional Brownian motion is understood in the classical framework of cylindrical random variables and cylindrical measures. The developed stochastic integral for deterministic operator valued integrands is based on a series representation of the cylindrical fractional Brownian motion, which is analogous to the Karhunen–Loève expansion for genuine stochastic processes. In the last part we apply our results to study the abstract stochastic Cauchy problem in a Banach space driven by cylindrical fractional Brownian motion.  相似文献   

7.
This paper addresses the exponential stability of the trivial solution of some types of evolution equations driven by Hölder continuous functions with Hölder index greater than 1/2. The results can be applied to the case of equations whose noisy inputs are given by a fractional Brownian motion BH with covariance operator Q, provided that H(1/2,1) and tr(Q) is sufficiently small.  相似文献   

8.
We prove the Malliavin regularity of the solution of a stochastic differential equation driven by a fractional Brownian motion of Hurst parameter H>0.5H>0.5. The result is based on the Fréchet differentiability with respect to the input function for deterministic differential equations driven by Hölder continuous functions. It is also shown that the law of the solution has a density with respect to the Lebesgue measure, under a suitable nondegeneracy condition.  相似文献   

9.
In this paper, we consider stochastic differential equations with non-negativity constraints, driven by a fractional Brownian motion with Hurst parameter H > 1/2. We first study an ordinary integral equation, where the integral is defined in the Young sense, and we prove an existence result and the boundedness of the solutions. Then, we apply this result pathwise to solve the stochastic problem.  相似文献   

10.
In this paper we discuss split-step forward methods for solving Itô stochastic differential equations (SDEs). Eight fully explicit methods, the drifting split-step Euler (DRSSE) method, the diffused split-step Euler (DISSE) method and the three-stage Milstein (TSM 1a-TSM 1f) methods, are constructed based on Euler-Maruyama method and Milstein method, respectively, in this paper. Their order of strong convergence is proved. The analysis of stability shows that the mean-square stability properties of the methods derived in this paper are improved on the original methods. The numerical results show the effectiveness of these methods in the pathwise approximation of Itô SDEs.  相似文献   

11.
12.
In this paper, we consider a class of stochastic partial differential equations (SPDEs) driven by a fractional Brownian motion (fBm) with the Hurst parameter bigger than 1/2. The existence of local random unstable manifolds is shown if the linear parts of these SPDEs are hyperbolic. For this purpose we introduce a modified Lyapunov-Perron transform, which contains stochastic integrals. By the singularities inside these integrals we obtain a special Lyapunov-Perron's approach by treating a segment of the solution over time interval [0,1] as a starting point and setting up an infinite series equation involving these segments as time evolves. Using this approach, we establish the existence of local random unstable manifolds in a tempered neighborhood of an equilibrium.  相似文献   

13.
We derive a Molchan–Golosov-type integral transform which changes fractional Brownian motion of arbitrary Hurst index KK into fractional Brownian motion of index HH. Integration is carried out over [0,t][0,t], t>0t>0. The formula is derived in the time domain. Based on this transform, we construct a prelimit which converges in L2(P)L2(P)-sense to an analogous, already known Mandelbrot–Van Ness-type integral transform, where integration is over (−∞,t](,t], t>0t>0.  相似文献   

14.
15.
16.
ABSTRACT

We investigate the asymptotic properties of the maximum likelihood estimator and Bayes estimator of the drift parameter for stochastic processes satisfying linear stochastic differential equations driven by a mixed fractional Brownian motion. We obtain a Bernstein–von Mises-type theorem also for such a class of processes.  相似文献   

17.
Consider a stochastic process {X t , 0 ≤ tT} governed by a stochastic differential equation given by
dXt = S(Xt)   dt + e  dWtH,    X0=x0,    0 £ tT dX_t= S(X_t) \;dt + \epsilon \; dW_t^H,\quad X_0=x_0,\quad 0 \leq t \leq T  相似文献   

18.
This paper is devoted to study a class of stochastic Volterra equations driven by fractional Brownian motion. We first prove the Driver type integration by parts formula and the shift Harnack type inequalities. As a direct application, we provide an alternative method to describe the regularities of the law of the solution. Secondly, by using the Malliavin calculus, the Bismut type derivative formula is established, which is then applied to the study of the gradient estimate and the strong Feller property. Finally, we establish the Talagrand type transportation cost inequalities for the law of the solution on the path space with respect to both the uniform metric and the L2-metric.  相似文献   

19.
In this paper we study nonlinear stochastic evolution equations in a Hilbert space driven by a cylindrical fractional Brownian motion with Hurst parameter and nuclear covariance operator. We establish the existence and uniqueness of a mild solution under some regularity and boundedness conditions on the coefficients and for some values of the parameter H. This result is applied to stochastic parabolic equation perturbed by a fractional white noise. In this case, if the coefficients are Lipschitz continuous and bounded the existence and uniqueness of a solution holds if . The proofs of our results combine techniques of fractional calculus with semigroup estimates.  相似文献   

20.
The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈(1/2, 1) and the underlying standard Brownian motions are studied. The generalization of the It formula involving the fractional and standard Brownian motions is provided. By theory of Malliavin calculus and contraction mapping principle, the local existence and uniqueness of the solutions to BSDEs driven by both fractional Brownian motions and the underlying standard Brownian motions are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号