首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell migration is essential to many physiological processes, including angiogenesis, which is critical to the success of implanted biomaterials and tissue-engineered constructs. Gradients play an important role in cell migration. Previous work on cell migration has been mostly executed either in the concentration gradients of stimuli (e.g., VEGF) in bulk or hydrogels or on the surface-density gradients of ECM proteins (e.g., fibronectin) or small ligands (e.g., RGD). Little work has been done to investigate how cell migration responds to the surface-density gradients of growth factors. No work has been done to study how the surface gradients of both adhesive proteins and growth factors influence cell migration. In this work, we studied the effect of the surface-density gradients of fibronectin (FN), VEGF, or both proteins on endothelial cell migration. Gradients with different slopes were prepared to study how the gradient slope affects cell migration. The gradients were generated by first forming a counter-propagating C15COOH/C11OH self-assembled monolayer (SAM) gradient using a surface electrochemistry approach, followed by activating the -COOH moieties and covalently immobilizing proteins onto the surface. Fourier transform infrared spectra and X-ray photoelectron spectroscopy were used to characterize the SAM and protein gradients, respectively. A free cell migration assay using bovine aortic endothelial cells was performed on various gradient surfaces or on surfaces with uniform protein density. Results showed that cells on the surface-density gradients of FN, VEGF, or both proteins moved faster along the gradient direction than on the respective uniform control surface after 24-h cell culture. It is also shown that for each protein or protein combination, the directional cell displacement was not statistically different between two gradients with different slopes. Results show that the directional cell migration was increased by about 2-fold on the VEGF gradient as compared to the FN gradient and was further increased by another 2-fold on the combined gradients of both proteins as compared to the VEGF gradient alone. This is the first work to create surface-density gradients of VEGF and the first study to generate a combined surface gradient of growth factor and ECM protein to investigate their effect on cell migration on surfaces. This work broadens our understanding of the directional movement of endothelial cells. Our findings provide useful information for directing cell migration into tissue-engineered constructs and can be potentially used for those applications where cell migration is critical, such as angiogenesis.  相似文献   

2.
VEGFR1 (Flt-1), is a high-affinity tyrosine kinase receptor of VEGF found primarily on vascular endothelial cells. Recently, Flt-1 has shown to be expressed in human monocytes. However, the key intracellular signaling pathway mediated by Flt-1 receptor has been yet to be identified in monocytes. In this regard, using a robust systems biology approach, the key druggable target(s) involved in inflammatory angiogenesis mediated through VEGFR1 signaling was identified. Furthermore, experimental validation of key drug targets is conducted using PMA- and VEGF- stimulated human monocyte THP-1 cell lines. The key network pathways and corresponding disease modules were analyzed to identify the important biological processes perturbed in diseases. Using topological analysis, ICAM1 was identified as putative regulator of monocytes migration into tumor-micro environment. And these targets were examined by treating with curcumin and capsaicin molecules. Our results showed that these two molecules inhibited the over expression of targets such as ICAM1, Flt-1, and NF-κB in the VEGFR1 signalling pathway by reducing THP-1 chemotaxis. Besides, Curcumin and Capsaicin down-regulated expression of pro-inflammatory cytokines TNF-α, IL-6, and CXCL8/IL-8 and up regulated the expression of IL-10, a sign of lowered M1/M2 ratio relating to abrogation of inflammation.  相似文献   

3.
We studied topological effects of subcellular roughness displayed by a closely packed particle monolayer on adhesion and growth of endothelial cells. Poly(styrene-co-acrylamide) (SA) particles were prepared by soap-free emulsion copolymerization. Particle monolayers were prepared by Langmuir–Blodgett deposition using particles, which were 527 (SA053) and 1270 nm (SA127) in diameter. After 24-h incubation, cells tightly adhered on a tissue culture polystyrene dish and randomly spread. On the other hand, cells attached on particle monolayers were stretched into a narrow stalk-like shape. Lamellipodia spread from the leading edge of cells attached on SA053 monolayer to the top of the particles and gradually gathered to form clusters. This shows that cell–cell adhesion became stronger than cell–substrate interaction. Cells attached to SA127 monolayer extended to the reverse side of a particle monolayer and engulfed particles. They remained immobile without migration 24 h after incubation. This shows that the inhibition of extensions on SA127 monolayer could inhibit cell migration and cell proliferation. Cell growth on the particle monolayers was suppressed compared with a flat TCPS dish. The number of cells on SA053 gradually increased, whereas that on SA127 decreased with time. When the cell seeding density was increased to 200,000 cells cm−2, some adherent cells gradually became into contact with adjacent cells. F-actin condensations were formed at the frame of adherent cells and the thin filaments grew from the edges to connect each other with time. For the cell culture on SA053 monolayer, elongated cells showed a little alignment. Cells showed not arrangement of actin stress fibers but F-actin condensation at the contact regions with neighboring cells. Interestingly, the formed cell monolayer could be readily peeled from the particle monolayer. These results indicate that endothelial cells could recognize the surface roughness displayed by particle monolayers and the response was dependent on the pitch of particle monolayers.  相似文献   

4.
In order to prevent restenosis after angioplasty or stenting, one of the most popular targets is suppression of the abnormal growth and excess migration of vascular smooth muscle cells (VSMCs) with drugs. However, the drugs also adversely affect vascular endothelial cells (VECs), leading to the induction of late thrombosis. We have investigated the effect of epigallocatechin-3-gallate (EGCG) on the proliferation and migration of VECs and VSMCs. Both cells showed dose-dependent decrease of viability in response to EGCG while they have different IC(50) values of EGCG (VECs, 150 mM and VSMCs, 1050 mM). Incubating both cells with EGCG resulted in significant reduction in cell proliferation irrespective of cell type. The proliferation of VECs were greater affected than that of VSMCs at the same concentrations of EGCG. EGCG exerted differential migration-inhibitory activity in VECs vs. VSMCs. The migration of VECs was not attenuated by 200 mM EGCG, but that of VSMCs was significantly inhibited at the same concentration of EGCG. It is suggested that that EGCG can be effectively used as an efficient drug for vascular diseases or stents due to its selective activity, completely suppressing the proliferation and migration of VSMCs, but not adversely affecting VECs migration in blood vessels.  相似文献   

5.
Endothelial cell polarization and chemotaxis in a microfluidic device   总被引:2,自引:0,他引:2  
Shamloo A  Ma N  Poo MM  Sohn LL  Heilshorn SC 《Lab on a chip》2008,8(8):1292-1299
The directed migration of endothelial cells is an early and critical step in angiogenesis, or new blood vessel formation. In this study, the polarization and chemotaxis of human umbilical vein endothelial cells (HUVEC) in response to quantified gradients of vascular endothelial growth factor (VEGF) were examined. To accomplish this, a microfluidic device was designed and fabricated to generate stable concentration gradients of biomolecules in a cell culture chamber while minimizing the fluid shear stress experienced by the cells. Finite element simulation of the device geometry produced excellent agreement with the observed VEGF concentration distribution, which was found to be stable across multiple hours. This device is expected to have wide applicability in the study of shear-sensitive cells such as HUVEC and non-adherent cell types as well as in the study of migration through three-dimensional matrices. HUVEC were observed to chemotax towards higher VEGF concentrations across the entire range of concentrations studied (18-32 ng mL(-1)) when the concentration gradient was 14 ng mL(-1) mm(-1). In contrast, shallow gradients (2 ng mL(-1) mm(-1)) across the same concentration range were unable to induce HUVEC chemotaxis. Furthermore, while all HUVEC exposed to elevated VEGF levels (both in steep and shallow gradients) displayed an increased number of filopodia, only chemotaxing HUVEC displayed an asymmetric distribution of filopodia, with enhanced numbers of protrusions present along the leading edge. These results suggest a two-part requirement to induce VEGF chemotaxis: the VEGF absolute concentration enhances the total number of filopodia extended while the VEGF gradient steepness induces filopodia localization, cell polarization, and subsequent directed migration.  相似文献   

6.
Vascular endothelial growth factor (VEGF) is a cytokine and endothelial cell (EC) mitogen that has been studied for its role in angiogenesis of malignant tumors. Elevated quantities of VEGF in the serum and plasma of patients have been correlated with the presence of cancer and metastasis. Since VEGF induces hyperpermeability of EC monolayers, this protein can be detected in vitro with a whole cell-based biosensor. This biosensor consists of a confluent monolayer of human umbilical vein endothelial cells (HUVECs) attached to a cellulose triacetate (CTA) membrane of an ion-selective electrode (ISE). Previous studies regarding this biosensor have shown that when the biosensor was exposed to a model toxin, such as histamine, the response of the biosensor served as an indirect measurement of the presence of histamine. Similarly, the biosensor responds to the presence of VEGF, but is much more sensitive because VEGF is known to be 50,000-fold more potent than histamine when inducing EC hyperpermeability. The ISE response increased with increasing VEGF concentration. Since lower concentrations required more exposure time, the detection limit was established as a function of exposure time (2–10 h). The practical applicability of the biosensor was also established with cultured human melanoma cells WM793 (nonmetastatic) and 1205LU (metastatic). The resultant change in the potential values revealed significant production of VEGF from the 1205LU cells. A VEGF ELISA was performed to confirm the VEGF concentration in each sample. The biosensor closely predicted the concentrations determined through the ELISA. These results support the use of a cell-based ISE as a quick screening method for the presence of VEGF.  相似文献   

7.
Mealworm and mealworm oil (MWO) have been reported to affect antioxidant, anti-coagulation, anti-adipogenic and anti-inflammatory activities. However, the function of MWO in wound healing is still unclear. In this study, we found that MWO induced the migration of fibroblast cells and mRNA expressions of wound healing factors such as alpha-smooth muscle actin (α-SMA), collagen-1 (COL-1) and vascular endothelial growth factor (VEGF) in fibroblast cells. The tube formation and migration of endothelial cells were promoted through the activation of VEGF/VEGF receptor-2 (VEGFR-2)-mediated downstream signals including AKT, extracellular signal-regulated kinase (ERK) and p38 by MWO-stimulated fibroblasts for angiogenesis. Moreover, we confirmed that MWO promoted skin wound repair by collagen synthesis, re-epithelialization and angiogenesis in an in vivo excisional wound model. These results demonstrate that MWO might have potential as a therapeutic agent for the treatment of skin wounds.  相似文献   

8.
As abnormal angiogenesis is associated with exacerbation of various diseases, precise control over angiogenesis is imperative. Vascular endothelial growth factor (VEGF), the most well-known angiogenic factor, binds to VEGF receptor (VEGFR), activates various signaling pathways, and mediates angiogenesis. Therefore, blocking the VEGF-induced angiogenic response-related signaling pathways may alleviate various disease symptoms through inhibition of angiogenesis. Ulmus davidiana is a safe natural product that has been traditionally consumed, but its effects on endothelial cells (ECs) and the underlying mechanism of action are unclear. In the present study, we focused on the effect of a 60% edible ethanolic extract of U. davidiana (U60E) on angiogenesis. U60E inhibited the VEGF-mediated proliferation, tube formation, and migration ability of ECs. Mechanistically, U60E inhibited endothelial nitric oxide synthase activation and nitric oxide production by blocking the protein kinase B signaling pathway activated by VEGF and consequently inhibiting proliferation, tube formation, and migration of ECs. These results suggest that U60E could be a potential and safe therapeutic agent capable of suppressing proangiogenic diseases by inhibiting VEGF-induced angiogenesis.  相似文献   

9.
Selenadiazole derivatives (SeDs) have been found to show promise in chemo‐/radiotherapy applications by activating various downstream signaling pathways. However, the functional role of SeDs on angiogenesis, which is pivotal for tumor progression and metastasis, has not yet been elucidated. In the present study, we have examined the antiangiogenic activities of SeDs and elucidated their underlying mechanisms. The results showed that the as‐synthesized SeDs not only enhanced their anticancer activities against several human cancer cells but also showed more potent inhibition on human umbilical vein endothelial cells (HUVECs). The in vitro results suggested that SeDs, especially 1 a , dose‐dependently inhibited the vascular endothelial growth factor (VEGF)‐induced cell migration, invasion, and capillary‐like structure formation of HUVECs. Compound 1 a also significantly suppressed VEGF‐induced angiogenesis in a Matrigel plug assay as part of a C57/BL6 mice assay by means of down regulation of VEGF. Furthermore, we found that 1 a significantly inhibited MCF‐7 human breast tumor growth in nude mice without severe systematic cytotoxicity. Compound 1 a was more effective in inhibiting cell proliferation and induced a much more pronounced apoptosis effect in endothelial cells than MCF‐7 cells, which implies that endothelial cells might be the primary target of 1 a . Further mechanistic studies on tumor growth inhibition effects and neovessel formation suppression demonstrated that 1 a inhibited cell viability of MCF‐7 and HUVECs by induction of cell apoptosis, accompanied by poly(adenosine diphosphate ribose)polymerase (PARP) cleavage and caspase activation. Additionally, the 1 a ‐induced antiangiogenesis effect was achieved by abolishing the VEGF‐VEGFR2‐ERK/AKT (ERK=extracellular signal–regulated kinases; AKT=protein kinease B) signal axis and enhanced the apoptosis effect by triggering reactive oxygen species (ROS)‐mediated DNA damage. Taken together, these results clearly demonstrate the antiangiogenic potency of SeDs and the underlying molecular mechanisms.  相似文献   

10.
Cardiovascular disease is an important cause of death in patients with chronic kidney disease (CKD). Protein-bound uremic toxins, such as p-cresyl and indoxyl sulfate (IS), are poorly removed during hemodialysis, leading to vascular endothelial dysfunction and leukocyte extravasation. These processes can be related to dynamic adhesion structures called podosomes. Several studies have indicated the role of integrin-linked kinase (ILK) in the accumulation of integrin-associated proteins in podosomes. Here, we investigated the involvement of ILK and podosome formation in the adhesion and extravasation of monocytes under p-cresol (pc) and IS exposure. Incubation of THP-1 human monocyte cells with these toxins upregulated ILK kinase activity. Together, both toxins increased cell adhesion, podosome formation, extracellular matrix degradation, and migration of THP-1 cells, whereas ILK depletion with specific small interfering RNAs suppressed these processes. Interestingly, F-actin colocalized with cortactin in podosome cores, while ILK was colocalized in podosome rings under toxin stimulation. Podosome Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) and AKT protein depletion demonstrated that monocyte adhesion depends on podosome formation and that the ILK/AKT signaling pathway is involved in these processes. Ex vivo experiments showed that both toxins induced adhesion and podosome formation in leukocytes from wild-type mice, whereas these effects were not observed in leukocytes of conditional ILK-knockdown animals. In summary, under pc and IS stimulation, monocytes increase podosome formation and transmigratory capacity through an ILK/AKT signaling pathway-dependent mechanism, which could lead to vascular injury. Therefore, ILK could be a potential therapeutic target for the treatment of vascular damage associated with CKD.Subject terms: Experimental models of disease, Atherosclerosis, Mechanisms of disease, Integrins, End-stage renal disease  相似文献   

11.
Gene transfer of basic fibroblast growth factor (bFGF) has been shown to induce significant endothelial migration and angiogenesis in ischemic disease models. Here, we investigate what factors are secreted from skeletal muscle cells (SkMCs) transfected with bFGF gene and whether they participate in endothelial cell migration. We constructed replication-defective adenovirus vectors containing the human bFGF gene (Ad/bFGF) or a control LacZ gene (Ad/LacZ) and obtained conditioned media, bFGF-CM and LacZ-CM, from SkMCs infected by Ad/bFGF or Ad/LacZ, respectively. Cell migration significantly increased in HUVECs incubated with bFGF-CM compared to cells incubated with LacZ-CM. Interestingly, HUVEC migration in response to bFGF-CM was only partially blocked by the addition of bFGF-neutralizing antibody, suggesting that bFGF-CM contains other factors that stimulate endothelial cell migration. Several proteins, matrix metalloproteinase-1 (MMP-1), plasminogen activator inhibitor-1 (PAI-1), and cathepsin L, increased in bFGF-CM compared to LacZ-CM; based on 1-dimensional gel electrophoresis and mass spectrometry. Their increased mRNA and protein levels were confirmed by RT-PCR and immunoblot analysis. The recombinant human bFGF protein induced MMP-1, PAI-1, and cathepsin L expression in SkMCs. Endothelial cell migration was reduced in groups treated with bFGF-CM containing neutralizing antibodies against MMP-1 or PAI-1. In particular, HUVECs treated with bFGF-CM containing cell-impermeable cathepsin L inhibitor showed the most significant decrease in cell migration. Cathepsin L protein directly promotes endothelial cell migration through the JNK pathway. These results indicate that cathepsin L released from SkMCs transfected with the bFGF gene can promote endothelial cell migration.  相似文献   

12.
Surface modification of poly(ethylene terephthalate) (PET) film was performed by surface hydrolysis and layer-by-layer (LBL) assembly followed a mechanism of electrostatic adsorption of oppositely charged polymers, exemplified with chitosan and chondroitin sulfate (CS). Hydrolysis of PET in concentrated alkaline solution produced a carboxyl-enriched surface. The changes of weight loss and surface chemistry, morphology and wettability were monitored and verified by UV-vis spectroscopy, atomic force microscopy (AFM) and water contact angle. Assembly of positively charged chitosan and negatively charged CS was then conducted in a LBL manner to create multilayers on the hydrolyzed PET film. The process of layer growth and oscillation of surface wettability were monitored by UV-vis spectroscopy and water contact angle measurement, respectively. In vitro cell culture revealed that the adherence of endothelial cells was significantly enhanced on the biomacromolecules-modified PET film with preserved endothelial cell function, in particular on those assembled with larger number of chitosan/CS layers. However, with regard to cell proliferation and viability properties after cultured for 4 days, minor difference was determined between the modified and the unmodified PET films.  相似文献   

13.
Expression of thrombospondin-1 (TSP-1), which is a known inhibitor of tumor growth and angiogenesis, is reciprocally regulated by positive regulators, such as VEGF. Additionally, trichostatin A (TSA) suppresses tumor progression by altering VEGF levels and VEGF-mediated signaling. Thus, understanding TSA-regulated TSP-1 expression and the effects of altered TSP-1 levels might provide insights into the mechanism of action of TSA in anti-tumorigenesis, and provide an approach to cancer therapy. Here, we examined the effect of TSA on TSP-1 expression, and the effects of TSA-induced TSP-1 on cell motility and angiogenesis, in HeLa and bovine aortic endothelial cells. TSA remarkably increased TSP-1 expression at the mRNA and protein levels, by controlling the TSP-1 promoter activity. Both TSA and exogenous TSP-1 reduced cell migration and capillary-like tube formation and these activities were confirmed by blocking TSP-1 with its neutralizing antibody and small-interfering RNA. Our results suggest that TSP-1 is a potent mediator of TSA-induced anti- angiogenesis.  相似文献   

14.
15.
Anaplastic thyroid cancer (ATC) is one of the most fatal human malignancies. Ursi Fel (UF) is the bile of a brown bear that has been traditionally used for heat clearance and toxin relief in Korean and Chinese medicines. In this study, we determined the anticancer effects of a UF extract and its active compound, ursodeoxycholic acid (UDCA), in FRO human ATC cells. FRO cells were treated with UF extract and UDCA at different concentrations for various durations. Cell viability was measured using an MTT assay. Cell apoptosis was investigated by flow cytometric analysis following Annexin V and propidium iodide (PI) staining, and Hoechst staining was used to observe nuclear fragmentation. The expression of pro-apoptotic (Bax, caspase-3, cytochrome c, and PARP), anti-apoptotic (Bcl-2), and angiogenetic (TGF-β, VEGF, N-cadherin, and sirtuin-1) proteins and the phosphorylation of Akt and mechanistic target of rapamycin (mTOR) were determined by western blot analysis. Treatment with UF extract at 10, 25, and 50 μg/mL and UDCA at 25, 50, and 100 μM/mL significantly inhibited the growth of FRO cells in a dose-dependent manner. Flow cytometry and Hoechst staining revealed an increase in the apoptosis of FRO cells mediated by UF extract and UDCA in a dose-dependent manner. UF extract (25 and 50 μg) and UDCA (50 and 100 μM) significantly increased the expression of Bax, caspase-3, cytochrome c, and PARP and inhibited the expression of Bcl-2, TGF-β, VEGF, N-cadherin, and sirtuin-1 in FRO cells. Furthermore, UF extract and UDCA treatment stimulated Akt phosphorylation and inhibited mTOR phosphorylation in these cells. These results indicate that UF extract and UDCA exert anticancer properties in FRO cells by inducing apoptosis and inhibiting angiogenesis via regulating the Akt/mTOR signaling pathway.  相似文献   

16.
Angiogenesis is critical and indispensable for tumor progression. Since VEGF is known to play a central role in angiogenesis, the disruption of VEGF-VEGF receptor system is a promising target for anti-cancer therapy. Previously, we reported that a hexapeptide (RRKRRR, RK6) blocked the growth and metastasis of tumor by inhibiting VEGF binding to its receptors. In addition, dRK6, the D-form derivative of RK6, retained its biological activity with improved serum stability. In the present study, we developed a serum-stable branched dimeric peptide (MAP2-dRK6) with enhanced anti-VEGF and anti-tumor activity. MAP2-dRK6 is more effective than dRK6 in many respects: inhibition of VEGF binding to its receptors, VEGF- and tumor conditioned medium-induced proliferation and ERK signaling of endothelial cells, and VEGF-induced migration and tube formation of endothelial cells. Moreover, MAP2-dRK6 blocks in vivo growth of VEGF-secreting colorectal cancer cells by the suppression of angiogenesis and the subsequent induction of tumor cell apoptosis. Our observations suggest that MAP2-dRK6 can be a prospective therapeutic molecule or lead compound for the development of drugs for various VEGF-related angiogenic diseases.  相似文献   

17.
We found that a fungus Neosartorya sp. produced an angiogenesis inhibitor, RK-805. By spectroscopic analyses and semi-synthetic methods from fumagillin, the structure of RK-805 was identified as 6-oxo-6-deoxyfumagillol, which has not been reported as a natural product. RK-805 preferentially inhibited the growth of human umbilical vein endothelial cells (HUVECs) rather than that of human normal fibroblast in cell proliferation assays and blocked endothelial cell migration induced by vascular endothelial growth factor (VEGF). Moreover, RK-805 selectively inhibited methionine aminopeptidase-2 (MetAP2), but not methionine aminopeptidase-1 (MetAP1). The docked structure of RK-805 complexed with human MetAP2 indicated that not only a covalent bond between a nucleophilic imidazole nitrogen atom of His231 and the carbon of the reactive spirocyclic epoxide of RK-805, but also a hydrogen bond between NH (Asn329) and the carbonyl group of RK-805 at C-6 promote close contact in the binding pocket of the enzyme. Taken together, these results suggest that structure activity relationships of RK-805 derivatives at both C-4 and C-6, in comparison with ovalicin and TNP-470, would be useful for development of new angiogenesis inhibitors.  相似文献   

18.
The purpose of this study was to determine whether rapamycin could inhibit corneal angiogenesis induced by basic fibroblast growth factor (bFGF). Using human dermal microvascular endothelial cells (HDMECs), we examined the effect of rapamycin on cell proliferation and migration, and the expression of vascular endothelial growth factor (VEGF). The rabbit's eye was implanted intrastromally into the superior cornea with pellet containing bFGF for the control group and pellet containing bFGF and rapamycin for the rapamycin group. Biomicrographically, corneal angiogenesis was evaluated for 10 days after pellet implantation. The neovascularized cornea also was examined histologically. bFGF induced corneal neovascularization was significantly reduced by treatment with rapamycin. Using in vitro model, rapamycin strongly inhibited bFGF induced proliferation, migration, and VEGF secretion of HDMECs. We could observe that the bFGF induced corneal angiogenesis was inhibited by rapamycin in a micropocket rabbit model. The score of neovascularization was significantly decreased in the rapamycin group than in the control group at 10 days after pellet implantation. Histologically, the cornea of rapamycin group also showed much less new vessels than that of control group. Collectively, rapamycin appears to inhibit bFGF induced angiogenesis in a rabbit corneal micropocket assay and may have therapeutic potential as an antiangiogenic agent.  相似文献   

19.
This study was designed to determine the in vitro angiogenic ability of far-infrared (FIR) radiation in the skin-derived cultured human microvascular endothelial cells and to elucidate the role of mitogen-activated protein kinases (MAPKs) in this process. The results revealed that FIR radiation from a WS(TM) TY301 FIR emitter activated p38 and extracellular signal-regulated kinase (ERK), but not Akt or c-Jun N-terminal protein kinases (JNK), and significantly promoted angiogenesis by increasing tube formation in Matrigel and the migration of cells across an eight micron polyester filter. The addition of 50 μM PD98059, a MEK inhibitor, significantly inhibited the activation of ERK and the enhanced angiogenesis; in contrast, the inhibition of p38 phosphorylation did not inhibit the enhanced angiogenesis. After FIR radiation, there was no increase in vascular endothelial growth factor (VEGF) isoforms (VEGF-A, -B, -C and -D) mRNA and VEGF protein, no increase phosphorylation of endothelial nitric oxide synthase (eNOS) detected using Western blotting, and no increase in NO production detected using flow cytometry in cells pre-incubated with the cell-permeable NO-binding dye diluted 4-amino-5-methylamino-2', 7'-difluorofluorescein diacetate (DAF-FM DA). This study revealed that FIR radiation possesses in vitro angiogenic activity via the activation of the MEK/ERK but not the VEGF/Akt/eNOS-dependent signaling pathways.  相似文献   

20.
This study was performed to evaluate the contribution of adiponectin to the production of interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-1 and MMP-13 in human endothelial cells and osteoblasts in arthritic joints. Cultured human umbilical vascular endothelial cells (HUVECs) and osteoblasts were stimulated with adiponectin (1 or 10 μg ml−1) or IL-1β (0.1 ng ml−1) in the presence or absence of hypoxia for 24 h. The protein expression patterns were examined by analyzing culture supernatants using the enzyme-linked immunosorbent assay (ELISA). Adiponectin significantly stimulated the production of VEGF, MMP-1 and MMP-13 in osteoblasts but not in endothelial cells, whereas it significantly stimulated the production of IL-6 and IL-8 in both endothelial cells and osteoblasts. The increase in VEGF production induced by adiponectin was significantly greater than that induced by IL-1β. The production of IL-6 and IL-8 in adiponectin-stimulated endothelial cells was approximately 10-fold higher than that in IL-1β-stimulated endothelial cells; in osteoblasts, adiponectin-induced IL-6 and IL-8 secretion was approximately twofold higher than that induced by IL-1β. In addition, IL-8 production in endothelial cells was approximately sevenfold higher than in osteoblasts. However, IL-6 levels were similar between the two cell types, suggesting that adiponectin may be involved in the production of IL-8 in endothelial cells, which may have an important role in neutrophil recruitment to arthritic joints. Furthermore, the increases in protein expression induced by adiponectin were differentially regulated by hypoxia. In conclusion, adiponectin has a more important role than does IL-1β in the production of mediators that drive synovitis and joint destruction in endothelial cells and osteoblasts at physiological concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号