首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Savannah River Site Environmental Bioassay Lab participated in the 2008 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2008. A new rapid column separation method was used for analysis of actinides and 90Sr in the NRIP 2008 emergency water and urine samples. Significant method improvements were applied to reduce analytical times. As a result, much faster analysis times were achieved, less than 3 hours for determination of 90Sr and 3–4 hours for actinides. This represents a 25%–33% improvement in analysis times from NRIP 2007 and a ∼100% improvement compared to NRIP 2006 report times. Column flow rates were increased by a factor of two, with no significant adverse impact on the method performance. Larger sample aliquots, shorter count times, faster cerium fluoride microprecipitation and streamlined calcium phosphate precipitation were also employed. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and 90Sr analyses for NRIP 2008 emergency urine samples. High levels of potential matrix interferences may be present in emergency samples and rugged methods are essential. Extremely high levels of 210Po were found to have an adverse effect on the uranium results for the NRIP-08 urine samples, while uranium results for NRIP-08 water samples were not affected. This problem, which was not observed for NRIP-06 or NRIP-07 urine samples, was resolved by using an enhanced 210Po removal step, which will be described.  相似文献   

2.
Methodology for the determination of 89,90Sr, Am and Pu isotopes in complex samples is given. Methodology is based on simultaneous isolation of Sr, Y and actinides from samples by mixed solvent anion exchange chromatography, mutual separation of 89,90Sr and 90Y from actinides, mutual separation of Th, Pu and Am by extraction chromatography, quantitative determination of 89,90Sr by Cherenkov counting and quantitative determination of Pu and Am isotopes in soil and vegetation samples by alpha spectrometry. It is shown that Y and Sr can be efficiently separated from alkaline, alkaline earth and transition elements as well as from lanthanides and actinides on the column filed by strong base anion exchanger in nitrate form and 0.25?M HNO3 in mixture of ethanol and methanol as eluent. It is also shown that Pu, Am and Th strongly binds on the mentioned column, can be separated from number of elements and easily be eluted from column by water. After elution actinides were mutually separated on TRU column and electrodeposited on stainless steel disc. Examination of conditions of electrodeposition was shown that chloride-oxalate electrolyte with addition of DTPA in presence of sodium hydrogen sulphate in cell with cooling and rotating platinum anode enables deposition of actinides within 1?h by 0.8?A?cm?2 current density. Obtained peaks FWHM for Pu, Am and Th isotopes are between 27 and 40?keV. Scanning electron microscopy picture and ED XRF analysis of electroplated discs showed that actinide deposition is followed by iron oxide formation on disc surface. The methodology was tested by determination of 89,90Sr, Am and Pu isotopes in ERA proficiency testing samples (low level activity samples). Obtained results shows that 89,90Sr, 241Am and 238,239Pu can be simultaneously separated on anion exchange column, 89,90Sr can be determined by Cherenkov counting with a satisfactory accuracy and limit of determination within 1?C3?days after separation. 241Am and 238,239Pu can easily be separated on TRU column and determined after electrodeposition with acceptable accuracy within 1?day.  相似文献   

3.
Summary A relatively simple chemical separation procedure has been developed for the simultaneous determination of89Sr and 9 0Sractivities in water samples and on aerosol-filters of the Nuclear Power Plant (NPP) Paks origin. The procedure combines the cation-exchange chromatographic (Dowex 50 WX 8 resin) and solid phase extraction (EIChroM Sr.Spec?, DC18C6 crown ether) steps. The beta-radiation of radionuclides can be measured directly after the chemical separation by LSC. The activities of89Sr,90Sr and90Y are calculated from an over determined set of equations using a method of constrained optimization technique. The equations are based on LSC measurements performed in three counting windows plus the90Sr-90Y decay law. The chemical yield of strontium is determined by ICP-AES. The lowest limits of detectable activity, for the measurement time of 600 minutes, are 30 mBq/sample and 18 mBq/sample for89Sr and90Sr, respectively.  相似文献   

4.
A new procedure for isolation and determination of90Sr in real natural samples is presented. It consists of bringing natural samples in a soluble form suitable for separation on an ion-exchange column, separation of calcium from strontium by means of the anion exchanger Amberlite CG-400 and 0.25M HNO3 in methanol as eluent for calcium, and the determination of90Sr using a low level -counter after elution with H2O, scavenging steps and SrCO3 precipitation. The method was tested with IAEA standards of natural samples with known contents of90Sr, and water samples, where the concentration of90Sr was previously determined by the standard IAEA procedure. The results obtained show that it is possible to isolate and determine low levels of90Sr in natural samples. The procedure is favorable because of the simple separation of radioaactive strontium without using fuming nitric acid.  相似文献   

5.
A radiochemical procedure is given for the simultaneous determination of low levels of129I, actinides (Pu, Am, Cm) and90Sr in vegetation samples. It is shown that grass samples up to 5 kg fresh weight can be wet ashed conveniently by hydrogen peroxide under alkaline conditions, subsequent to an initial enzymatic disintegration. After purification of the iodine fraction,129I is determined by neutron activation analysis. Using alpha spectrometry,238Pu and239,240Pu are determined in the plutonium fraction, and241Am,242Cm, and244Cm in the americium/curium fraction. The90Sr is determined after separation by beta counting its decay product90Y.  相似文献   

6.
A procedure is presented to provide sequential determination of isotopic strontium, thorium, plutonium, uranium, and americium in a single biological sample. The method begins with digestion and dissolution of the sample. Tracers and/or carriers are added to the sample for the purpose of chemical yield monitoring. Strontium is first separated from the actinides and from most of the interfering constituents of the sample by precipitation as carbonates. Strontium isotopes are purified, and 89Sr and 90Sr are measured by gas proportional counting. Actinides are separated and purified by ion exchange chromatography, co-precipitated with neodymium fluoride, filtered, and counted by alpha-particle spectrometry.  相似文献   

7.
A radiochemical procedure is described for the sensitive determination of89Sr and90Sr activity concentrations in soil and sediment samples. After leaching the sample with hydrochloric acid, Sr is separated from most of the soluble matrix constituents and Ca by solvent extraction using dicylclohexano-18-crown-6 in trichloromethane. After backextraction with a EDTA-solution (ethylene diamine tetra acetate), Sr is purified by several precipitation steps from traces of matrix constituents and radionuclides which might interfere the beta measurements of89Sr,90Sr and90Y. The detection limits are about 0.2 Bq/kg and 0.4 Bq/kg for90Sr and89Sr respectively. The procedure can be applied to all kind of environmental samples with small modifications of the sample preparation steps prior to analysis.  相似文献   

8.
The methodology for the rapid determination of 89,90Sr in wide range of activity concentration is given. Methodology is based on simultaneous separation of strontium and yttrium from samples by mixed solvent anion exchange chromatography, mutual separation of 89,90Sr from 90Y by hydroxide precipitation and quantitative 89,90Sr determination by Cherenkov counting within 3 days. It is shown that Y and Sr can be efficiently separated from alkaline, alkaline earth and transition elements as well as from lanthanides and actinides on the column filed by strong base anion exchanger in nitrate form and 0.25 M HNO3 in mixture of ethanol and methanol as eluent. Decontamination factor for Ba, La and other examined elements except calcium is low and can not affect quantitative determination in predictable circumstances. Methodology for quantitative determination by Cherenkov counting based on following the changes of sample activity over time is described and discussed. It has been shown that 89,90Sr can be determined with acceptable accuracy when 89Sr/90Sr ratio is over 10:1 and that separation of Y enables reliable determination of 89Sr and 90Sr in wide range of 89Sr/90Sr ratios (60:1) and in some cases in presence of other yttrium and strontium isotopes. The methodology was tested by determination of 89,90Sr in Analytics crosscheck samples (nuclear waste sample) and ERA proficiency testing samples (low level activity samples). Obtained results shows that by using of low level liquid scintillation counter it can be possible to determine 89Sr and 90Sr in wide range of concentration activity (1–1,000 Bq/L/kg) with uncertainty below 10% within 2–3 days. Results also show that accuracy of determination of 89Sr (and 90Sr) strongly depends on the determination of difference between separation and counting time when activity ratio of 89Sr/90Sr is high. Examination the influence of media and vial type on background radiation and counting efficiency has shown that lowest limit of determination can be obtained by using of HNO3 in plastic vials as counting media, because in this combination figure of merit is maximized. For the recovery of 50% and 100 min of counting time estimated MDA is 55 Bq and 90 Bq for 90Sr and 89Sr, respectively. Analysis of combined uncertainty shows that it mainly depends on uncertainty of efficiency and recovery determination, uncertainty of activities determination for both isotopes and level of background radiation.  相似文献   

9.
The determination of90Sr is extremely difficult in biological materials by chemical meth ods owing to the quantity of calcium associated. The problem consists of the quantitative removal of calcium and of the selective extraction of90Sr using strontium carrier. It can be solved by precipitation and extraction methods, or by ion exchange chromatography. Following our previous works, experimental evidence is presented using ion exchange technique for these purposees, where complex compounds are used as eluents for calcium removal. For the determination of90Sr in milk and bones, calcium was removed with 1,2-diamino-cyclohexane-N,N,N′,N′-tetraacetic acid (CyDTA) eluent from Amberlite IR-120 column. Our results show that compounds of chelatone type used as eluents with a strong acidic cation exchanger column are the most convenient, for they prefer to compound with ligands of weaker or mean complexibility (hydrochloric acid, citric acid and lactic acid).   相似文献   

10.
The distribution of some radionuclides in the course of137Cs and90Sr extraction and scrubbing between organic and water phase was determined.137Cs and90Sr were isolated from the mixture of radionuclides in mineralized biological materials. Dicarbolide of cobalt i. e. 3,3′-commo-bis[undecahydro-1,2-dicarbo-3-closo-dodecaborate] was used as an extracting agent. Quantities of the extracted radionuclides were determined by gamma spectrometric technique. Single and repeated extraction of90Sr with 0.01M resp. 0.1M dicarbolide of cobalt in nitrobenzene and scrubbing of coextracted radionuclides by 0.5M HNO3 were studied. The extraction of90Sr was investigated from solutions of a hydrofobizing agent in the same way. Finally, the quantitative extraction of137Cs followed by the extraction of90Sr from mixtures of radionuclides in a mineralized biological material was studied. Extraction yields from dry and wet mineralizates of biological tissues, from urine and milk were compared. Suitable working conditions for the separation procedures were selected.  相似文献   

11.
An improved and rapid method for determination of90Sr via its daughter nuclide,90Y, in aqueous samples from the low-level radioactive wastes by Cerenkov counting was established. This technique is applicable to beta particles maximum energies greater than 0.263 MeV in aqueous solution. A comparison of90Sr determination by Cerenkov counting and standard wet chemical separation techniques indicates a high degree of correlation and excellent agreement. For a 20 ml aqueous sample following the prescribed experimental conditions and a 60 min counting interval, the detection limit was 0.20 dpm/ml (0.10 pCi/ml), and the relative deviation is less then 5%.  相似文献   

12.
A survey is given on the basic factor affecting the determination of90Sr in milk and bones by removal of the excess calcium by precipitation. Strong co-precipitation of calcium and strontium takes place using fuming nitric acid, potassium hexacyano-ferrate, EDTA, ethanol-ether mixture and butanol-(1) due to partial precipitation, recrystallization and adhesion processes where thepH value of the environment plays an improtant role. The obtained results show very limited applicability of these agents for the determination of90Sr in biological materials because of low accuracy and reproducibility. This conclusion is especially valid for the method of rapid determination of90Sr with EDTA according toWelford andSutton. In this work a method is given for the determination of90Sr in milk and bones using potassium hexacyanoferrate.   相似文献   

13.
A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified 90Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and 90Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.  相似文献   

14.
The determination of90Sr in large sample of seawater by its daughter product90Y by means of solvent extraction with bis-2-ethylhexyl-phosphoric acid (HDEHP) ini n-heptane leads to234Th contamination. Two methods are described by which the238U daughter product234Th is separated from the Y3+ samples, either by a cation exchanger procedure or by a co-recipitation with Zr3(PO4)4.  相似文献   

15.
Summary An extraction technique for the separation of 90Sr from a high excess of90Y has been developed. This procedure can be used for the determination of trace amounts of90Sr in90Y prepared by a radiochemical90Y/90Sr generator by liquid scintillation.  相似文献   

16.
Neutron activation analysis has been investigated as an in situ method for determination of90Sr. The thermal neutron capture cross-section for the90Sr(n, γ)91Sr reaction has been measured to be 14.0±2.4 mb which is in disagreement with the currently accepted literature value. The suitability of this reaction and the fast neutron reactions90Sr(n, p)90Rb and90Sr(n, α)87Kr, for the in situ determination of90Sr is discussed.  相似文献   

17.
A universal and fast method of90Sr determination in environmental matrices (raw and dried milk, plants, soils) has been elaborated. Solvent extraction method of daughter90Y by tributyl phosphate was used. The method of strontium determination is compatible with determination of other transuranic elements (americium, plutonium) and there is no need to check the chemical yield of strontium.  相似文献   

18.
We studied the use of an extraction chromatography for determination of 90Sr in contaminated water samples. The aim of our work was to compare selected products from the point of view of the strontium chemical yields and analysis time. Three commercial products, 3M Empore? Strontium Rad Disk, AnaLig® Sr-01 gel, Sr®Resin, and two classical methods, liquid?Cliquid extraction with tributhylphosphate and carbonate co-precipitation, were tested for the separation of 90Sr. The water sample from nuclear power plant A1 Jaslovske Bohunice was used for radiochemical analysis of 90Sr volume activity. Samples were traced with 85Sr to monitor strontium chemical recovery and counted either by Cerenkov counting on TRI CARB 2900 TR liquid scintillation counter or low level alpha?Cbeta proportional counter.  相似文献   

19.
A procedure for semi-automatic isolation and determination of radioactive strontium from natural samples was developed. The method was tested by the determination of90Sr in soil samples and the results obtained were compared to those obtained by the standard procedure. The procedure consists of leaching of strontium (and other cations as well) from soil samples with a water suspension of the cation exchanger Amberlite IR-20, the separation of strontium from other cations, e.g., potassium, calcium, sodium, barium by the anion exchangers Amberlite CG-400 or Dowex Ag 1×8 with 0.25M HNO3 in ethanol-methanol mixture as eluent in the apparatus specially constructed for this purpose. Determination of90Sr was done on the low-level gas-flow β-counter and by Cherenkow counting on the liquid-scintillation counter few hours after the separation. It was shown that this procedure might be successfully applied for rapid determination of90Sr in soil samples and other natural samples in a timesaving manner.  相似文献   

20.
This paper describes the development and validation of analytical procedures for the separation and determination of90Sr,90Y,238Pu,239/240Pu,241Am,241Cm and243/244Cm in liquid effluents and environmental samples. The procedures use supported reagents for extraction chromatography (reversed phase partition chromatography) that enable the separation of the analytes from a large number of other radionuclides present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号