首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用大分子单体技术通过自由基共聚法合成了由甲基丙烯酸(MAA)和N, N-二乙基丙烯酰胺(DEAM)组成的几种不同组成的P(MAA-g-DEAM)接枝共聚物.通过UV-Vis 透光率的测定和荧光探针技术, 对共聚物水溶液的相行为进行了研究. 研究表明, 此接枝共聚物具有相互独立的温度和pH 敏感性;几种组成不同的P(MAA-g-DEAM)接枝共聚物具有基本相同的低临界溶解温度(LCST);它们的临界相变pH与接枝共聚物的组成有关, 温敏性PDEAM 枝链的接枝率越高, 其临界相变pH 越高. pH > 5.5 时, 接枝共聚物的主链是一种较为松散的线团构象;pH < 5.5 时, 接枝共聚物的主链是一种较为压缩的线团构象. 这种接枝共聚物高分子聚集体在新的纳米复合材料的合成方面有可能获得应用.  相似文献   

2.
利用原子转移自由基聚合(ATRP)方法合成了组成递变的2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯(MEO2MA)与寡聚乙二醇甲醚甲基丙烯酸酯(OEGMA)共聚物P(MEO2MA-co-OEGMA). 核磁共振氢谱(1HNMR)和凝胶渗透色谱(GPC)表征了聚合物的结构、分子量及其分布. 通过测定透光率、粘度、激光粒度分析了共聚物组成对共聚物低临界溶解温度(LCST)的影响, 考察了共聚物组成、浓度、盐浓度、盐种类、温度对其溶液相行为的影响. 结果表明: 所合成的共聚物具有温度敏感性, 其LCST 可以通过合成时共聚单体MEO2MA与OEGMA投料比的改变来调控, 随着OEGMA量的增加共聚物的LCST升高, 共聚物溶液浓度升高其LCST减小, 随盐溶液浓度的增大共聚物的LCST降低, 共聚物的LCST降低主要受盐溶液中阴离子价数的影响; HCl的引入使共聚物水溶液的LCST降低; NaOH的引入使共聚物水溶液的LCST升高.  相似文献   

3.
齐晓君  刘守信  刘腾  党莉  杨曦  雨薇娜  王红梅 《化学学报》2011,69(15):1803-1810
利用原子转移自由基聚合方法(ATRP)合成了组成递变的嵌段共聚物P(HEMA-co-DEAEMA)-b-PDEAM-b- P(DEAEMA-co-HEMA). 用FTIR, 1H NMR和GPC技术表征了聚合物的组成、结构、分子量及其分布. 通过透光率测定、粘度、激光粒度分析和透射电镜研究了共聚物组成、温度及溶液pH对其溶液相行为和胶束化作用的影响. 结果表明: 所合成的嵌段共聚物具有温度和pH敏感性, 共聚物水溶液的低临界溶解温度(LCST)随HEMA量的增加而降低, 临界相变pH随HEMA量的增加而降低, 温度和pH诱导均可实现嵌段共聚物的胶束化. 控制HEMA量可以调控嵌段共聚物的LCST和pKa.  相似文献   

4.
用表面张力法研究了以水溶性可生物降解的葡聚糖为主链 ,具有温敏相变特性的聚 (N 异丙基丙烯酰胺 )为接枝链的葡聚糖 接枝 聚 (N 异丙基丙烯酰胺 ) (Dextran g PNIPAM)共聚物在水溶液中的胶束化行为 .研究结果表明Dextran g PNIPAM体系的微胶束化行为与共聚物结构和溶液体系的温度密切相关 ,接枝共聚物中PNIPAM含量越大 ,水溶液体系的温度越高 ,形成胶束的临界胶束浓度 (CMC)越小 .特别值得指出的是 ,无论水溶液的温度是否高于PNIPAM接枝链段的相变温度 (LCST) ,即PNIPAM链段由亲水性转变为疏水性的温度 ,Dextran g PNIPAM均呈现一个临界胶束浓度大 ,对该现象给予了解释 .  相似文献   

5.
含疏水链节的聚N-异丙基丙烯酰胺共聚物的温敏性   总被引:1,自引:0,他引:1  
采用溶液聚合法合成了一系列N-异丙基丙烯酰胺(NIPAM)与甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯或甲基丙烯酸丁酯的无规共聚物,用浊度观测法和光散射法测定了不同共聚物水溶液的温敏相转变行为.结果表明:所得共聚物的低临界溶解温度(LCST)均低于均聚物PNIPAM的,酯类单体的结构和含量对共聚物的LCST有显著影响,其中酯基上的烷基对共聚物LCST的影响能力大于丙烯酸酯α位上的烷基,前者对增大共聚物的疏水性有更大贡献.通过NIPAM与特定丙烯酸酯单体进行无规共聚可以合成转变温度低于PNIPAM均聚物且具有预设LCST数值的水溶性温敏聚合物.  相似文献   

6.
以N,N-二甲基丙烯酰胺(DMA)和双丙酮丙烯酰胺(DAAM)为共聚单体,在水溶液中采用常规自由基聚合以K_2S_2O_8-Na_2SO_3双氧化还原体系为引发剂,合成了一系列具有最低临界溶解温度(LCST)的温敏性聚合物P(DMA-co-DAAM).采用紫外可见分光光度计、动态光散射、芘荧光探针法和变温核磁共振氢谱等多种手段研究共聚物在不同温度下的溶液结构,结果表明共聚物P(DMA-co-DAAM)具有明显的热致缔合行为,在低温下聚合物以单链形式溶解,温度升高超过LCST之后由于P(DMA-co-DAAM)分子链上DAAM侧基发生亲水-疏水性变化,部分疏水链段缔合形成微相分离的胶束聚集体.进一步的研究还表明通过改变共聚物组成和溶液浓度能够有效调节共聚物溶液的缔合转变温度,共聚物P(DMA-co-DAAM)的LCST值与DAAM含量成很好的线性关系,DAAM含量越高LCST温度越低.采用常规自由基聚合所带来的链间异质性以及分子量的多分散性等特点并没有显著影响共聚物P(DMA-co-DAAM)的温敏性.  相似文献   

7.
以N-乙烯基吡咯烷酮(NVP)和甲基丙烯酸-N,N-二甲胺乙酯(DMAEMA)为单体,采用自由基聚合法合成了NVP与DMAEMA的共聚物及其水凝胶。研究发现共聚物的水溶液具有温度及pH双重敏感特性。相分离温度随DMAEMA含量的增加和水溶液浓度的降低而升高,随pH值的增大而减小且相变敏锐。通过对水凝胶溶胀率的考察,发现共聚凝胶在适当的单体浓度及交联剂浓度下,有较敏感的溶胀-退胀行为。在碱性条件下,共聚凝胶随温度的升高迅速退胀。pH=9时,改变温度,对辅酶A有很好的控制释放;而在酸性条件下,则无退胀行为,对辅酶A不能释放。  相似文献   

8.
通过对聚乙烯醇(PVA)进行正离子化和缩醛化改性,制备了一种新型PVA基温敏性聚合物(CAPVA),其盐水溶液表现出最低临界溶解温度(LCST).在LCST温度以下,CAPVA能溶解于水中,其水溶液清澈透明;温度高于LCST后,CAPVA聚集并从水中分离析出.利用元素、表面电荷分析和核磁共振谱对CAPVA的结构进行了表征,并用浊度法研究了正离子接枝率、缩醛度和溶液中NaCl浓度对CAPVA温敏性的影响.  相似文献   

9.
通过原子转移自由基聚合(ATRP)合成了一种带有活性—NH2基团的温度敏感性亲水型共聚物P(NiPAAm-co-DMAA), 并将其作为引发剂, 合成了P(NiPAAm-co-DMAA)-co-P(L-Ala), 其分子量分布(PDI)在1.3左右. 聚合物通过自组装形成纳米胶束. 透射电镜(TEM)结果表明, 胶束大小200~300 nm, 具有明显的核壳结构. 共聚物的最低临界溶解温度(LCST)为45.5 ℃. 温度低于LCST时, 聚合物溶解形成胶束; 高于LCST时, 胶束解离, 聚合物不溶. 聚合物对温度的响应是快速而可逆的.  相似文献   

10.
具有温度敏感和荧光特性的侧链查尔酮共聚物的研究   总被引:2,自引:0,他引:2  
采用2,2′-偶氮二异丁腈作为引发剂,将N-异丙基丙烯酰胺和4-甲基丙烯酰氧基-4′-二甲氨基查尔酮单体,在四氢呋喃溶剂中通过自由基共聚制备了一系列具有溶剂和温度双重敏感荧光特性的侧链查尔酮共聚物,并通过红外光谱、核磁共振氢谱和紫外-可见光谱对其结构进行表征,通过吸光度法测定了共聚物中查尔酮单元的含量.研究了侧链查尔酮共聚物的温敏性以及溶剂极性和温度双重敏感的荧光特性.结果表明,侧链查尔酮共聚物是一类具有最低临界溶解温度(LCST)的温敏性聚合物,其LCST温度随着共聚物中查尔酮含量的增加而降低;随着溶剂极性的增加,侧链查尔酮共聚物的紫外-可见最大吸收波长红移,其荧光发光波长红移并且发光强度先增强后降低,具有溶剂极性敏感的荧光特性;同时对比侧链查尔酮共聚物水溶液低温和高温下的荧光,发现低温下几乎无荧光,高温下其荧光得到明显增强,其荧光具有可逆的温度"开/关"特性。  相似文献   

11.
Water-soluble graft copolymers were synthesized by copolymerization of acrylamide with mono-methoxy-poly(ethylene oxide)-methacrylates (Me-PEO-MA). The Me-PEO-MA macromers were synthesized by a catalytic esterification of methacrylic acid with mono-methoxy-poly(ethylene glycol)s with different molecular weights. The graft copolymers obtained were characterized by 1H-NMR spectroscopy, gel permeation chromatography (GPC) and Ubbelohde viscosimetry. The rheological behaviour of aqueous polymer solutions, which are expected to show hydrophobic association at elevated temperatures, was studied with a cone and plate-rheometer.  相似文献   

12.
Water-soluble graft copolymers of well-defined structure having hydrophobic polymethacrylate branches with different ester groups were prepared by the macromonomer method. Methacrylate macromonomers of controlled molecular weights having a methacryloyloxyl end group were synthesized by radical polymerization of the corresponding monomer in the presence of thioglycolic acid followed by the reaction of glycidyl methacrylate with the terminal carboxyl group. These macromonomers were copolymerized with methacrylic acid and methyl methacrylate to prepare tailor-made graft copolymers composed of a hydrophlic backbone and different kinds of hydrophobic branches, which were characterized by elemental analysis, NMR, and GPC. The viscosities of the aqueous solutions of the sodium salts of these graft copolymers were measured. It was found that the viscosity of the dilute solution of the graft copolymer was remarkably high compared with the corresponding random copolymer irrespective of the ester group in branch segments. Solubilizing behavior of Orange-OT in aqueous solutions of the graft copolymers and the random copolymer were also investigated to study the nature of the hydrophobic domain of the graft copolymers.  相似文献   

13.
We have investigated the morphology and packing manner of graft copolymers consisting of rigid‐rod‐like poly(γ‐benzyl L ‐glutamate) (PBLG) main chains and grafted diblock copolymers of amorphous poly(propylene glycol) (PPG) and crystalline poly(ethylene glycol) (PEG). The results of differential scanning calorimetry and wide‐angle X‐ray scattering measurements for graft copolymers with higher side‐chain volume fractions suggest that the rodlike main chains and crystallized PEG chains exist in segregated domains. Small‐angle X‐ray scattering profiles for these samples show diffraction intensity maxima accompanied by higher order peaks, the positions of which suggest the formation of an ordered layered structure. From these observations, the graft copolymers are estimated to form repeated layered structure consisting of segregated PBLG, PPG, and PEG layers. A proposed model for molecular packing of the graft copolymers is consistent with the experimental observation that the repeating distance for the layered structure decreases with an increase in the volume fraction of side chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1904–1912, 2002  相似文献   

14.
pH and temperature‐sensitive biodegradable poly(β‐aminoester)‐graft‐poly(ε‐caprolactone)‐block‐methoxy poly(ethylene glycol) (PBAE‐g‐PCL‐b‐mPEG) amphiphilic graft copolymers with different molecular weights were synthesized. The structure of these copolymers was adjusted by varying the feed ratios of ε‐caprolactone to methoxy poly(ethylene glycol)s (mPEG), amine and diacrylate monomer amounts and the molecular weight of mPEG. Aqueous solutions of these copolymers formed micelles at lower concentrations; however, the concentrated solutions showed a reversible sol–gel transition property depending on both pH and temperature changes under representative physiological conditions (pH 7.4, 37°C). The effects of the molecular weight of pH‐sensitive poly(β‐aminoester) block and mPEG group, the hydrophobic to hydrophilic block ratio (PCL/mPEG) and the concentration of the copolymer on the sol–gel transition were investigated. Proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography measurements were used to characterize the structure of the synthesized copolymers. The self‐assemble behavior and critical micelle concentration of the amphiphilic copolymers were estimated in phosphate buffer solution using fluorescence spectroscopy. The gelling behavior was measured by using tube inversion method. At pH 7.4, all copolymer solutions prepared 20 wt% concentration indicated sol–gel transition with increasing temperature. In vitro degradation experiments displayed that the synthesized graft copolymers mostly degraded hydrolytically within 20 days under physiological conditions. In order to investigate the potential application of synthesized hydrogels in drug delivery, Methylene Blue was used and approximately 70% of the loaded amount was released in 120 hr. The findings indicate that obtained graft copolymers can be used as injectable biodegradable carriers for pharmaceutical drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Amphiphilic graft copolymers consisting of a hydrophobic backbone and poly(oxyethylene) (PEO) side chains were employed as solidliquid phase-transfer catalysts (PTC) in the substitution of octylbromide by solid potassium phenoxide in toluene. A wide variety of structures were synthesized via ester substitution of poly(phthalimidoacrylate) (PPIA) or poly(phthalimidoacrylate-co-styrene) [poly(PIA-co-St)] with amino-functionalized methoxy-PEO (MPEO-NH2). The phase-transfer catalytic activity (PTA) of these soluble graft copolymers was studied as a function of the structure of the backbone, the length of the side chains, and the graft density. The graft copolymers of a high degree of grafting showed PTA higher than that of parent PEOs. GPC was used to study the behavior of the graft copolymers in toluene at 90°C. It is believed that the phase-transfer reaction is accelerated in the PEO microphase.  相似文献   

16.
A novel synthetic approach was developed for the controllable modification of chitosan (CS) with poly(ϵ-caprolactone) (PCL). 6-O-Triphenylmethyl-chitosan (TMCS) was synthesized as a highly soluble intermediate in organic solvents to facilitate an efficient grafting reaction of PCL onto CS in a homogeneous reaction medium. Subsequently, the syntheses of CS-g-PCL copolymers with different degrees of substitution (ds) and various chain lengths of PCL (number-average molecular weight = 1200–11,000) were carried out by a coupling reaction between the carboxylic terminal groups of PCL chains and the amino groups of TMCS. The successful grafting reaction was confirmed by GPC measurements, which indicated that the products were graft copolymers rather than physical blends. The ds, defined as the number of PCL chains per saccharide unit, of the graft copolymers could be adjusted simply by changes in the molar feed ratios of PCL to CS, and graft copolymers with different ds values ranging from 0.28 to 0.49 were synthesized, as calculated by 1H NMR and elemental analysis. DSC and X-ray measurements showed that the melting temperature and enthalpy of the PCL grafts of these graft copolymers could be adjusted by the ds and the chains length of PCL, respectively. Meanwhile, the CS-g-PCL copolymers exhibited better solubility in various solvents, such as in chloroform for some of the resultant graft copolymers, than the original CS. Finally, nanoparticles of 100–200 nm, having hydrophobic PCL domains and cationic hydrophilic surfaces, were obtained through the self-assembly of the copolymers in selective solvents. These types of graft copolymers have great potential in various applications, such as targeted drug and gene delivery as well as tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2556–2568, 2007  相似文献   

17.
Starch-g-polyacrylonitrile (starch-g-PAN) copolymers were prepared by ceric ammonium nitrate initiation, and the major portion of the starch in these graft copolymers was then removed by acid hydrolysis to yield PAN with oligosaccharide end groups. Although these PAN-oligosaccharide samples reacted with methyl methacrylate in the presence of ceric ammonium nitrate, the resulting products were largely graft copolymers rather than the expected PAN-poly(methyl methacrylate) (PMMA) block copolymers. The following evidence is presented for a PAN-g-PMMA structure: (i) PAN without oligosaccharide end groups also produced a copolymer with methyl methacrylate under our reaction conditions. (ii) Starch-g-PAN (51 or 37% add-on) was a less reactive substrate toward ceric-initiated polymerization than PAN with oligosaccharide end groups. (iii) Low-add-on (18%) starch-g-PAN reacted with methyl methacrylate to give a final graft copolymer in which a large percentage of PMMA was grafted to the PAN component rather than to starch.  相似文献   

18.
Summary: The graft copolymers of Polyacrylamide (PAA) to Dextran (Mw = 20000 and Mw = 70000) have been synthesised by ceric-ion-reduced redox initiation method. Molecular characteristic of graft copolymers were determined from light scattering, SEC, and viscometry data. It was established that the increase of molecular weight of Dextran component up to 3.5 times do not influence essentially organization at molecular level of these copolymers in aqueous solution. Thet D-g-PAA copolymers capable of binding the heavy metal ions.  相似文献   

19.
Two copolymers containing p-tolylcarbamoyl pendant group poly (MAMT-co-VAc) and poly(MAMT-co-MA) were synthesized f and the graft copolymerization of AAM onto these two func-tional copolymers films initiated with ceric salt were carried out in aqueous solution for variousperiods at 30℃. The formation of graft copolymer was verified by water absorption, ESCA andSEM photographs. Based on the results of the study of the initiation mechanism of model com-pounds and ceric salt systems, the reaction mechanism of the graft copolymerization initiated withceric salt was proposed.  相似文献   

20.
Graft and star copolymers having poly(methacrylate) backbone and ethylene–propylene random copolymer (EPR) branches were successfully synthesized by radical copolymerization of an EPR macromonomer with methyl methacrylate (MMA). EPR macromonomers were prepared by sequential functionalization of vinylidene chain‐end group in EPR via hydroalumination, oxidation, and esterification reactions. Their copolymerizations with MMA were carried out with monofunctional and tetrafunctional initiators by atom transfer radical polymerization (ATRP). Gel‐permeation chromatography and NMR analyses confirmed that poly(methyl methacrylate) (PMMA)‐g‐EPR graft copolymers and four‐arm (PMMA‐g‐EPR) star copolymers could be synthesized by controlling EPR contents in a range of 8.6–38.1 wt % and EPR branch numbers in a range of 1–14 branches. Transmission electron microscopy of these copolymers demonstrated well‐dispersed morphologies between PMMA and EPR, which could be controlled by the dispersion of both segments in the range between 10 nm and less than 1 nm. Moreover, the differentiated thermal properties of these copolymers were demonstrated by differential scanning calorimetry analysis. On the other hand, the copolymerization of EPR macromonomer with MMA by conventional free radical polymerization with 2,2′‐azobis(isobutyronitrile) also gave PMMA‐g‐EPR graft copolymers. However, their morphology and thermal property remarkably differed from those of the graft copolymers obtained by ATRP. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5103–5118, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号