首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The activation of dioxygen is a key step in CO oxidation catalyzed by gold nanoparticles. It is known that small gold cluster anions with even-numbered atoms can molecularly chemisorb O(2) via one-electron transfer from Au(n)(-) to O(2), whereas clusters with odd-numbered atoms are inert toward O(2). Here we report spectroscopic evidence of two modes of O(2) activation by the small even-sized Au(n)(-) clusters: superoxo and peroxo chemisorption. Photoelectron spectroscopy of O(2)Au(8)(-) revealed two distinct isomers, which can be converted from one to the other depending on the reaction time. Ab initio calculations show that there are two close-lying molecular O(2)-chemisorbed isomers for O(2)Au(8)(-): the lower energy isomer involves a peroxo-type binding of O(2) onto Au(8)(-), while the superoxo chemisorption is a slightly higher energy isomer. The computed detachment transitions of the superoxo and peroxo species are in good agreement with the experimental observation. The current work shows that there is a superoxo to peroxo chemisorption transition of O(2) on gold clusters at Au(8)(-): O(2)Au(n)(-) (n = 2, 4, 6) involves superoxo binding and n = 10, 12, 14, 18 involves peroxo binding, whereas the superoxo binding re-emerges at n = 20 due to the high symmetry tetrahedral structure of Au(20), which has a very low electron affinity. Hence, the two-dimensional (2D) Au(8)(-) is the smallest anionic gold nanoparticle that prefers peroxo binding with O(2). At Au(12)(-), although both 2D and 3D isomers coexist in the cluster beam, the 3D isomer prefers the peroxo binding with O(2).  相似文献   

2.
Density functional theory was employed to calculate the adsorption/dissociation of H2 on gold surfaces, Au(111) and Au(100), and on gold particles from 0.7 (Au14) to 1.2 nm (Au29). Flat surfaces of the bulk metal were not active towards H2, but a different effect was observed in gold nanoclusters, where the hydrogen was adsorbed through a dissociative pathway. Several parameters such as the coordination of the Au atoms, ensemble effects and fluxionality of the particle were analyzed to explain the observed activity. The effect of the employed functional was also studied. The flexibility of the structure, i.e., its adaptability towards the adsorbate, plays a key role in the bonding and dissociation of H2. The interaction with hydrogen leads to drastic changes in the structure of the Au nanoparticles. Furthermore, it appears that not only low coordinated Au atoms are needed because H2 adsorption/dissociation was only observed when a cooperation between several (4) active Au atoms was allowed.  相似文献   

3.
Mononuclear gold complexes in zeolite NaY were synthesized from initially physisorbed Au(CH3)2(C5H7O2) and characterized by X-ray absorption and infrared spectra recorded as the samples were exposed to flowing CO. X-ray absorption spectra demonstrate the formation of zero-valent gold nanoparticles during the CO treatment. Three new nu(CO) bands grew in during this treatment, at 2070, 2033, and 2000 cm(-1), characteristic of carbonyls of Au0. Because the relative intensities of these bands decreased monotonically when the flow of CO was replaced by flowing He, it is inferred that they correspond to a single Au0(CO)3 species, on low-coordinated Au atoms. This is the first example of an Au0(CO)3 species.  相似文献   

4.
A well-defined cluster containing 12 equivalent platinum atoms was prepared by ion exchange of an NaY zeolite, followed by hydrogen reduction. It was characterized by electron paramagnetic resonance (EPR) spectroscopy, hyperfine sublevel correlation (HYSCORE), and theoretical calculations. Combing the results of the experiments with density functional calculations, the likely structure of this cluster is icosahedral Pt13Hm, possibly with a low positive charge. The adsorbed H/D on the Pt cluster surface can be exchanged reversibly at room temperature. From H/D desorption experiments, an H2 binding energy of 1.36 eV is derived, in reasonable agreement with the calculated value but clearly larger than that for a (111) Pt single-crystal surface, revealing a finite size effect. While the hydrogen-covered cluster should clearly be regarded as a molecule, it is conceivable that the cluster adopts metallic character upon hydrogen desorption. It is likely that up to m=30 H atoms bind to this cluster with 12 surface atoms, which has important implications for the determination of the dispersion of small Pt catalyst particles by hydrogen chemisorption. Calculations as well as experiments give evidence of an interesting magnetic behavior with high-spin states playing a prominent role. There are strong indications that a reservoir of EPR silent but structurally similar clusters exists which can partly be converted to EPR visible species by H/D exchange or by gas adsorption.  相似文献   

5.
Aiming to understand the role of the substrate in the adsorption of carbon monoxide on gold clusters supported on metal-oxides, we have started a study of that process on two different alumina substrates: an amorphous-like fully relaxed stoichiometric (Al2O3)20 cluster and the Al terminated (0001) surface of alpha-(Al2O3) crystal. In this paper, we present first principles calculations for the adsorption of one Au atom on both alumina substrate and the adsorption of Au8 on (Al2O3)20. Then, we study the CO adsorption on the minimum energy structure of these three different gold/alumina systems. A single Au adsorbs preferably on top of an Al atom with low coordination, the binding energy being higher in the case of Au/(Al2O3)20. CO absorbs preferably on top of the Au atom, but in the case of Au/(Al2O3)20, Au forms a bridge with the Al and O substrate atoms after CO adsorption. We find other stable sites for CO adsorption on the cluster but not on the surface. This result suggests that the Au activity toward CO may be larger for the amorphous cluster than for the crystal surface substrate. For the most stable Au8/(Al2O3)20 configuration, two Au atoms bind to Al and a O atoms respectively and CO adsorbs on top of the Au which binds to the Al atom. We find other CO adsorption sites on supported Au8 which are not stable for the free Au8 cluster.  相似文献   

6.
Incipient-wetness impregnation of gamma-Al(2)O(3) with HAuCl(4) and subsequent removal of chlorine with NaOH, and deposition-precipitation of HAuCl(4) on TiO(2) at pH 7 resulted in supported Au(3+) species. Time-resolved in situ XAS at the Au L(3) edge showed that the Al(2)O(3)-supported oxidic or hydroxidic species were reduced in hydrogen at 440 K to yield small metallic gold clusters. The Au(3+) precursor decomposed to metallic gold in inert atmosphere at 573 K and in oxidizing atmosphere above 623 K. In all atmospheres, initially small clusters were formed that gradually grew with increasing temperature. The TiO(2)-supported species were considerably less stable. In hydrogen and carbon monoxide, Au(0) clusters of 1 to 1.5 nm were formed at room temperature, which was the lowest temperature studied. In inert and oxidizing atmosphere, the Au(3+) precursor decomposed fully to metallic gold at 530 K, as shown by XAS and temperature-programmed experiments. Large clusters were obtained already in the initial stage of reduction. Residual chlorine inhibited the reduction and led to sintering of the gold clusters. Exposure of the TiO(2)-supported catalyst precursor to light or the X-ray beam led to partial reduction, and STEM showed that storage of the reduced gold clusters under ambient conditions led to agglomeration and bimodal cluster-size distributions.  相似文献   

7.
We present evidence for the formation of transient hydroxyls from the reaction of water with atomic oxygen on Au(111) and investigate the effect of adsorbed oxygen on the hydrogen bonding of water. Water is evolved in peaks at 175 and 195 K in temperature programed reaction experiments following adsorption of water on oxygen-covered Au(111). The peak at 175 K is ascribed to sublimation of multilayers of water, whereas the peak at 195 K is associated with oxygen-stabilized water or a water-hydroxyl surface complex. Infrared reflection absorption spectra are consistent with the presence of molecular water over the entire range of coverages studied, indicating that isolated stable hydroxyls are not formed. Isotopic exchange of adsorbed (16)O with H(2)(18)O following adsorption and subsequent temperature programed reaction, however, indicates that transient OH species are formed. The extent of oxygen exchange was considerable--up to 70%. The degree of oxygen exchange depends on the initial coverage of oxygen, the surface temperature when preparing oxygen adatoms, and the H(2)(18)O coverage. The hydroxyls are short-lived, forming and disproportionating multiple times before water desorption during temperature programed reaction. It was also found that chemisorbed oxygen is critical in the formation of hydroxyls and stabilizing water, whereas gold oxide does not contribute to these effects. These results identify transient hydroxyls as species that could play a critical role in oxidative chemical reactions on gold, especially in ambient water vapor. The crystallinity of adsorbed water also depended on the degree of surface ordering and chemical modification based on scanning tunneling microscopy and infrared spectra. These results demonstrate that oxidation of interfaces has a major impact on their interaction with water.  相似文献   

8.
在分子尺度上介绍了Au/TiO2(110)模型催化剂表面和单晶Au表面CO氧化反应机理和活性位、以及H2O的作用.在低温(<320 K), H2O起着促进CO氧化的作用, CO氧化的活性位位于金纳米颗粒与TiO2载体界面(Auδ+–Oδ––Ti)的周边. O2和H2O在金纳米颗粒与TiO2载体界面边缘处反应形成OOH,而形成的OOH使O–O键活化,随后OOH与CO反应生成CO2.300 K时CO2的形成速率受限于O2压力与该反应机理相印证.相反,在高温(>320 K)下,因暴露于CO中而导致催化剂表面重组,在表面形成低配位金原子.低配位的金原子吸附O2,随后O2解离,并在金属金表面氧化CO.  相似文献   

9.
With a variety of surface probe techniques, we investigated low-temperature decomposition of methanol on Au nanoclusters formed by vapor deposition onto an ordered Al(2)O(3)/NiAl(100) thin film. Upon adsorption of methanol on the Au clusters (with mean diameter 1.5-3.8 nm and height 0.45-0.85 nm) at 110 K, some of the adsorbed methanol dehydrogenates directly into carbon monoxide (CO); the produced hydrogen atoms (H) begin to desorb near 125 K whereas most of the CO desorbs above 240 K. The reaction exhibits a significant dependence on the Au coverage: the produced CO increases in quantity with the Au coverage, reaches a maximum at about 1.0-1.5 ML Au, whereas decreases with further increase of the Au coverage. The coverage-dependence is rationalized partly by an altered number of reactive sites associated with low-coordinated Au in the clusters. At least two kinds of reactive sites for the low-temperature decomposition are distinguished through distinct C-O stretching frequencies (2050 cm(-1) and 2092 cm(-1)) while the produced CO co-adsorbs with H and methanol.  相似文献   

10.
To contrast the reactivity of supported metal clusters with that of extended metal surfaces, we investigated the reactions of tetrairidium clusters supported on porous gamma-Al2O3 (Ir4/gamma-Al2O3) with propene and with H2. Infrared, 13C NMR, and extended X-ray absorption fine-structure spectroscopy were used to characterize the ligands formed on the clusters. Propene adsorption onto Ir4/gamma-Al2O3 at 298 K gave stable, cluster-bound mu3-propylidyne. Propene adsorbed onto Ir4/gamma-Al2O3 at 138 K reacted at approximately 219 K to form a stable, highly dehydrogenated, cluster-bound hydrocarbon species approximated as CxHy (such as, for example, C3H2 or C2H). H2 reacted with Ir4/gamma-Al2O3 at 298 K, forming ligands (likely hydrides), which prevented subsequent reaction of the clusters with propene to form propylidyne. Propylidyne on Ir4 was stable in helium or H2 as the sample was heated to 523 K, whereupon it reacted with oxygen of the support to give CO. Propylidyne on Ir4 did not undergo isotopic exchange in the presence of D2 at 298 K. In contrast, the literature shows that propylidyne chemisorbed on extended metal surfaces is hydrogenated in the presence of H2 (or D2) and exchanges hydrogen with gaseous D2 at room temperature; in the absence of H2, it decomposes thermally to give hydrocarbon fragments at temperatures much less than 523 K. The striking difference in reactivities of propylidyne on clusters and propylidyne on extended metal surfaces implies the requirement of ensembles of more than the three metal surface atoms bonded to propylidyne in the surface reactions. The results highlight the unique reactivity of small site-isolated metal clusters.  相似文献   

11.
Dimethyl gold complexes bonded to partially dehydroxylated MgO powder calcined at 673 K were synthesized by adsorption of Au(CH3)2(acac) (acac is C5H7O2) from n-pentane solution. The synthesis and subsequent decomposition of the complexes by treatment in He or H2 were characterized with diffuse reflectance Fourier transform infrared (DRIFT), X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies. The XANES results identify Au(III) in the supported complexes, and the EXAFS and DRIFTS data indicate mononuclear dimethyl gold complexes as the predominant surface gold species, consistent with the lack of Au-Au contributions in the EXAFS spectrum and the presence of nu(as)(CH3) and nu(s)(CH3) bands in the IR spectrum. EXAFS data show that each complex is bonded to two oxygen atoms of the MgO surface at an Au-O distance of 2.16 angstroms. The DRIFT spectra show that reaction of Au(CH3)2(acac) with MgO at room temperature also formed Mg(acac)2 and H(acac) species on the support. Treatment of the dimethyl gold complexes in He or H2 at increasing temperatures varying from 373 to 573 K removed CH3 ligands and caused aggregation forming zerovalent gold nanoclusters of increasing size, ultimately with an average diameter of about 30 angstroms. Analysis of the gas-phase products during the genesis of the gold clusters indicated formation of CH4 (consistent with removal of CH3 groups) and CO2 at 473-573 K, associated with decomposition of the organic ligands derived from acac species. O2 and CO2 were also formed in the decomposition of ubiquitous carbonates present on the surface of the MgO support.  相似文献   

12.
The reactions of sodium (aza-15-crown-5)dithiocarbamate with [AuClL] precursors lead to mono-, di-, or hexanuclear derivatives depending on L. The homoleptic hexanuclear gold(I) cluster [Au6(S2CNC10H20O4)6] is formed by displacement of the chloride and isocyanide ligands in [AuCl(CN(2,6-Me2C6H3))]. X-ray diffraction studies show a novel geometry in gold cluster chemistry where the six gold atoms display a cyclohexane-like geometry in a chair conformation with Au-Au-Au angles of 117.028(9) degrees, two short gold-gold distances of 2.9289(5) A, and bidentate bridging dithiocarbamate ligands. The molecular structure shows a crown of gold atoms surrounded by crown ethers. This derivative luminesces at 569 nm at room temperature in the solid state. A dinuclear isomer [Au2(S2CNC10H20O4)2] had been reported previously and was obtained by reaction with [AuCl(SMe2)]. The mechanism to obtain the hexanuclear derivative involves a mononuclear intermediate [Au(S2CNC10H20O4)(CNR)] for which the X-ray structure shows a short gold-gold distance of 3.565 A with the two molecules in an anti configuration. Phosphine gold(I) mononuclear derivatives [Au(S2CNC10H20O4)(PR3)] (R = Me, Ph, both characterized by X-ray diffraction) and dinuclear diphosphine derivatives [{Au(S2CNC10H20O4)}2(mu-P-P)] (P-P = dppm, bis(diphenylphosphinomethane); dppp, 1,3-bis(diphenylphosphinopropane); and dppf, 1,1'-bis(diphenylphosphinoferrocene)) are also reported. In the mononuclear complexes, the molecular structure confirms that the dithiocarbamato ligand is mainly acting as monodentate, with a second longer Au-S distance of 3.197 (PMe3), 2.944(4) (PPh3), and 2.968 A (CNR). Three phosphine complexes are emissive at 562 (PMe3), 528 (PPh3), and 605 nm (dppm), at 77 K. X-ray diffraction studies of the dppm derivative show gold-gold intramolecular contacts of 3.0972(9) A (3.2265(10) A for a second independent molecule) and basically monodentate coordination of the dithiocarbamato ligands. All the complexes extract sodium and potassium salts from aqueous solutions. The diphosphine derivatives are noticeably better extractors than the monophosphino derivatives, mainly for potassium salts.  相似文献   

13.
采用沉积-沉淀法制备了Al2O3和MOx-Al2O3(M=Fe,Zn)负载型金催化剂.室温下对其CO氧化及富氢条件下CO选择氧化催化活性进行了广泛的研究.催化剂床层温度由热电偶直接测定.催化剂表面温度与O2/CO的体积比以及CO和H2的浓度密切相关.在CO氧化反应过程中Au/Al2O3催化剂的温度可高达170°C,添加FeOx可使其降至55°C.利用一系列仪器(X射线衍射仪,X射线光电子能谱仪和透射电镜等)对催化剂的结构进行了表征.结果显示Al2O3负载型金催化剂热点的形成可以通过添加合适的助剂很好地控制.助剂的添加能够使催化剂活性中心由金属态Au变为AuIII,从而导致了CO选择氧化反应机理不同.  相似文献   

14.
Pt L(3) X-ray absorption edge data on small supported Pt particles (N < 6.5) reveals that at very low H(2) pressure or high temperature the strongest bonded H is chemisorbed in an atop position. With decreasing temperature or at higher H(2) pressure only n-fold (n = 2 or 3) sites are occupied. At high H(2) pressure or low temperature, the weakest bonded H is positioned in an "ontop" site, with the chemisorbing Pt already having a stronger bond to a H atom in an n-fold site. DFT calculations show that the adsorption energy of hydrogen increases for Pt particles on ionic (basic) supports. The combination of the DFT calculations with hydrogen chemisorption data and the analysis of the Pt L(3) X-ray absorption spectra implies that both the H coverage and/or the type of active Pt surface sites, which are present at high temperature catalytic reaction conditions, strongly depend on the ionicity of the support. The consequences for Pt catalyzed hydrogenolysis and hydrogenation reactions will be discussed.  相似文献   

15.
The water-gas shift (WGS) reaction rate per total mole of Au under 7% CO, 8.5% CO(2), 22% H(2)O, and 37% H(2) at 1 atm for Au/Al(2)O(3) catalysts at 180 °C and Au/TiO(2) catalysts at 120 °C varies with the number average Au particle size (d) as d(-2.2±0.2) and d(-2.7±0.1), respectively. The use of nonporous and crystalline, model Al(2)O(3) and TiO(2) supports allowed the imaging of the active catalyst and enabled a precise determination of the Au particle size distribution and particle shape using transmission electron microscopy (TEM). Further, the apparent reaction orders and the stretching frequency of CO adsorbed on Au(0) (near 2100 cm(-1)) determined by diffuse reflectance infrared spectroscopy (DRIFTS) depend on d. Because of the changes in reaction rates, kinetics, and the CO stretching frequency with number average Au particle size, it is determined that the dominant active sites are the low coordinated corner Au sites, which are 3 and 7 times more active than the perimeter Au sites for Au/Al(2)O(3) and Au/TiO(2) catalysts, respectively, and 10 times more active for Au on TiO(2) versus Al(2)O(3). From operando Fourier transform infrared spectroscopy (FTIR) experiments, it is determined that the active Au sites are metallic in nature. In addition, Au/Al(2)O(3) catalysts have a higher apparent H(2)O order (0.63) and lower apparent activation energy (9 kJ mol(-1)) than Au/TiO(2) catalysts with apparent H(2)O order of -0.42 to -0.21 and activation energy of 45-60 kJ mol(-1) at near 120 °C. From these data, we conclude that the support directly participates by activating H(2)O molecules.  相似文献   

16.
The pH effect on adsorbed antibody-binding protein (protein G) orientation on gold (Au) and its adsorption thermodynamic characteristics were investigated using quartz crystal microbalance (QCM) and X-ray photoelectron spectroscopy (XPS). The adsorbed protein G orientation was measured by binding response of two antibody-antigen systems: the model bovine serum albumin (BSA) and the foodborne pathogen E. coli O157:H7. Surface coverage was not significantly affected by pH, but its orientation was. The most properly oriented protein G for antibody binding was achieved at near-neutral pH. Adsorption was verified by XPS measurements using nitrogen (N) 1s, oxygen (O) 1s, and Au 4p peak heights. Adsorption energetics were determined by van't Hoff and Langmuir kinetic analyses of adsorption data obtained at 296, 303, and 308 K. Large characteristic entropy change of protein adsorption was observed (ΔS° = 0.52 ± 0.01 kcal/mol·K). The adsorption process was not classical physisorption but exhibited chemisorption characteristics based on significant enthalpy change (ΔH° = -25 ± 6 kcal/mol).  相似文献   

17.
自Haruta与Hutchings于上世纪八十年代末发现金纳米催化剂优异的反应活性以来,科研人员对金催化的应用领域进行了广泛而深入地研究.对金催化科学和应用领域的研究一直在进行.大量的研究表明,金催化剂在各种选择性氧化反应中具有优异的催化性能(高活性和高选择性).然而,在催化加氢反应中,尽管金催化剂相比于铂族金属显示出优越的选择性,但是由于金催化剂选择性加氢反应的活性较差,使其在选择性催化加氢反应中的应用受到了极大的限制.研究表明,金催化剂较弱的活化氢气能力是其催化加氢反应活性低的主要原因.研究发现,氢气活化的活性中心可能是界面、负价金、低配位的金原子等.金催化剂具有明显的载体效应,金属-载体之间的相互作用能够显著地改变金催化剂的催化性能.Tauster等研究发现,铂族金属与还原性载体之间存在强相互作用,能够引发载体包覆金属表面,并且使得电子从载体向金属迁移,导致金属带负电.受金属-载体强相互作用(SMSI)效应的启发,本文探究了Au/TiO2催化剂中SMSI对金催化剂加氢性能的影响.在H2或O2气氛下高温焙烧Au/TiO2,获得一系列金催化剂(Au/TiO2-TA,T为焙烧温度(oC):300、400、500和600;A为气氛:H2或O2).对比在3-硝基苯乙烯(3-NS)选择性加氢反应中的活性发现,Au/TiO2-500H的TOF值是Au/TiO2-500O的3.3倍;动力学测试表明,Au/TiO2-500H和Au/TiO2-500O的反应表观活化能分别为79.5和105.1 kJ/mol.这表明两类催化剂催化活性中心的结构存在差异.X射线光电子能谱测试结果表明,Au/TiO2-H样品中Au带部分负电,而Au/TiO2-O中Au显示为金属态.HAADF-STEM和EELS显示,Au/TiO2-H中Au NPs的表面有TiOx物种,增加了Au-TiO2的界面.EPR结果表明,Au/TiO2-H中存在表面Ti3+物种,而Au/TiO2-O样品中则没有.为确认加氢反应的活性中心到底是界面还是负价金物种,本文探究了不同温度下氢气处理的Au/TiO2的结构与性能的关系,发现Au/TiO2-300H/400H/500H催化剂都显示出较好的催化3-NS加氢活性,而Au/TiO2-600H虽然具有更多的负价金物种,但是3-NS选择性加氢反应的活性反而降低,因此,负价金不是活性中心.这是因为不同温度处理的Au/TiO2-H样品中,SMSI的强弱不同,在300、400、500 oC下,SMSI能够增加Au-TiO2的界面长度,从而增强了3-NS加氢反应的活性;而温度达到600 oC,SMSI效应太强,Au NPs被包覆更密实,导致Au/TiO2-600H的3-NS选择性加氢反应的活性下降.密度泛函理论计算表明,Au/TiO2-H样品具有更低的H2解离活化能以及氢转移活化能.氢氘交换反应也进一步验证了SMSI有利于H2的活化.  相似文献   

18.
Site-specific rate constants for the gas-phase hydrogen/deuterium (H/D) exchange of four, three, five and five hydrogen atoms in protonated phenylalanine (Phe), proline (Pro), tyrosine (Tyr) and tryptophan (Trp), respectively, were determined from matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICRMS) experiments with D(2)O, D(2)S, and CH(3)OD as deuterating agents. No H/D exchange was observed with D(2)S. For exchange with both CD(3)OD and D(2)O, which is about ten times slower in the latter, results indicate for all compounds protonation of the alpha-amino group in agreement with theoretical results. Also, with both reagents, all compounds exchange at the COOH site more than ten times faster than at the protonation site, with OH and NH sites of Tyr and Trp, respectively, exchanging slowest. The observation of H/D exchange despite the high differences in proton affinities between the amino acids and deuterating agent exceeding 200 kJ mol(-1) is in agreement with lowering of the barrier for proton transfer through hydrogen bonding proposed by Lebrilla and coworkers.  相似文献   

19.
王嘉  尤瑞  千坤  潘洋  杨玖重  黄伟新 《催化学报》2021,42(12):2242-2253
以烯烃为还原剂的NOx选择性催化还原(HC-SCR)是重要的环境催化反应之一.Ag/Al2O3催化剂(SA)因在HC-SCR反应中表现高活性、高N2选择性及中等H2O和SO2耐受性等优点,而被广泛研究.SA催化剂中存在不同的Ag物种,包括孤立Ag+离子,带部分正电荷Agnδ+团簇和金属态Agn0团簇.文献研究结果表明,SA催化剂中Agnδ+团簇是催化HC-SCR反应的活性Ag物种,而Ag物种类型与Ag的负载量密切相关.因此文献中研究SA催化HC-SCR反应的结构-性能关系主要是通过改变Ag负载量来开展的,最优Ag负载量约为1%~2%.本文以Cl–改性的γ-Al2O3作为载体,采用传统的浸渍法制备了Ag/Al2O3-Cl催化剂(SA-Cl),通过XRD、TEM、H2-TPR、UV-Vis DRS以及XPS对催化剂进行了结构表征,并结合C3H6-SCR和H2/C3H6-SCR活性测试,建立催化剂结构-催化性能关系;同时利用原位傅里叶变换红外光谱(DRIFTS)和在线同步辐射单光子电离质谱(SVUV-PIMS)研究了SA催化HC-SCR的反应机理.结构表征结果表明,在SA催化剂中,Ag负载量的提高主要是增加了Agn0物种,而在SA-Cl催化剂中,Ag负载量的提高主要是增加了Agnδ+物种,因此Cl?改性能促进SA催化剂中Agnδ+物种的形成.活性测试结果表明,在相同Ag负载量下,SA-Cl催化剂表现出比SA催化剂更好的HC-SCR催化性能.Cl?改性对SA催化剂中Ag物种的调控作用和HC-SCR催化性能的促进作用随Ag负载量的增加变得更为明显.原位DRIFTS结果表明,γ-Al2O3载体(Al位点)是NO氧化形成硝酸盐物种的主要活性位点;Agnδ+物种催化丙烯适度氧化主要生成乙酸盐类物种,可以还原表面硝酸盐物种;而Agn0催化丙烯过度氧化主要生成羧酸盐类物种,进而生成CO2,不能还原表面硝酸盐物种.由此可见,Agnδ+是催化HC-SCR反应的活性Ag物种,而Agn0是催化烃类完全氧化反应的活性Ag物种;Cl–改性能有效促进Agnδ+的形成,进而提高HC-SCR催化反应活性.在线SVUV-PIMS结果检测到H2/C3H6-SCR反应中存在气态中间物种丙烯腈(CH2=CHCN).–CN和–NCO物种被认为是HC-SCR反应的关键中间物种,能够直接与气相NO+O2反应生成N2.因此,CH2=CHCN的存在说明HC-SCR反应涉及到气相反应机理.基于SA和SA-Cl催化剂,进一步研究了H2对C3H6-SCR低温活性的促进作用.结果表明,H2的促进作用是通过作用于Agnδ+物种,而不是通过Agn0物种来实现的;H2的引入有利于低温下强吸附硝酸盐物种的脱附或分解以及中间体向–NCO和–CN物种的转化,从而提高HC-SCR低温催化活性.综上,基于Cl–改性的Ag/Al2O3-Cl催化剂,本文成功证实了Agnδ+物种是催化HC-SCR反应的活性Ag物种,并结合原位DRIFTS在线SVUV-PIMS谱分别鉴定了催化反应表面中间物种和气相中间物种.这些结果加深了对SA催化HC-SCR反应构-效关系和反应机理的基础理解.  相似文献   

20.
负载型金催化剂在CO氧化反应中具有良好的低温活性,受到了研究者的广泛关注,其催化性能与载体的性质密切相关.氧化铝具有廉价易得、比表面积大和热稳定性好等优点.然而,作为一种非还原性载体,氧化铝提供活性氧物种的能力差,与还原性载体相比催化剂的CO氧化活性较低.理论计算和实验结果表明,在金催化剂中引入过渡金属镍能够有效促进氧分子在催化剂表面的吸附和活化,从而提升金催化剂活性.此外,过渡金属的存在能够提高金的分散度,增加活性位数目,防止在高温预处理过程中金颗粒的烧结,从而提高催化剂的活性和稳定性.基于上述考虑,本文在氧化铝纳米片合成过程中原位引入硝酸镍,以实现对氧化铝载体的改性,然后负载金并应用于CO氧化反应.结果表明,当载体中的Ni/Al摩尔比为0.05,金负载量为1wt%时,采用还原性气氛对催化剂进行预处理可以得到具有CO氧化性能优良的金催化剂, 20 oC下CO转化率即可达100%.预处理气氛能够显著影响催化活性,采用还原性气氛预处理后催化剂活性明显优于氧化性气氛预处理.采用X射线衍射(XRD)、高分辨透射电镜(HRTEM)、氢气程序升温还原(H2-TPR)、氧气程序升温脱附(O2-TPD)、CO吸附原位红外光谱(CO-DRIFT)和X射线光电子能谱(XPS)等表征手段进一步研究了镍掺杂对Au/Al2O3催化剂上CO氧化反应的促进作用机制.XRD测试未观察到明显的金或镍衍射峰,表明金或镍物种均为高分散.HRTEM结果进一步证实,引入镍物种后金颗粒的粒径由3.6 nm减小为2.4 nm,表明镍掺杂有助于提高金的分散度.而XPS结果显示,镍掺杂催化剂中金与镍存在电子转移,而镍仍以Ni O为主.H2-TPR结果表明,镍掺杂的催化剂前驱体中的金物种更容易被还原.O2-TPD结果证实,镍掺杂催化剂能够引入更多的氧空位,促进氧分子的吸附和活化,从而促进CO氧化反应的进行.CO-DRIFT结果表明,相比于氧化性气氛,采用还原性气氛预处理后金物种的电子云密度增加, CO吸附增强.而对于镍掺杂的催化剂,金物种吸附CO分子的能力进一步提高,有利于CO氧化反应的进行.综上,镍掺杂能够有效提高催化剂中金的分散度,增强催化剂对CO的吸附,促进氧气分子的吸附和活化,从而提高了催化剂的CO氧化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号