首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper we show the global convergence of the affine scaling methods without assuming any condition on degeneracy. The behavior of the method near degenerate faces is analyzed in detail on the basis of the equivalence between the affine scaling methods for homogeneous LP problems and Karmarkar's method. It is shown that the step-size 1/8, where the displacement vector is normalized with respect to the distance in the scaled space, is sufficient to guarantee the global convergence of the affine scaling methods.This paper was presented at the International Symposium Interior Point Methods for Linear Programming: Theory and Practice, held on January 18–19, 1990, at the Europa Hotel, Scheveningen, the Netherlands.  相似文献   

3.
In this paper we introduce a primal-dual affine scaling method. The method uses a search-direction obtained by minimizing the duality gap over a linearly transformed conic section. This direction neither coincides with known primal-dual affine scaling directions (Jansen et al., 1993; Monteiro et al., 1990), nor does it fit in the generic primal-dual method (Kojima et al., 1989). The new method requires main iterations. It is shown that the iterates follow the primal-dual central path in a neighbourhood larger than the conventional neighbourhood. The proximity to the primal-dual central path is measured by trigonometric functions.  相似文献   

4.
A new trust-region and affine scaling algorithm for linearly constrained optimization is presented in this paper. Under no nondegenerate assumption, we prove that any limit point of the sequence generated by the new algorithm satisfies the first order necessary condition and there exists at least one limit point of the sequence which satisfies the second order necessary condition. Some preliminary numerical experiments are reported. The work was done while visiting Institute of Applied Mathematics, AMSS, CAS.  相似文献   

5.
We consider an extension of the affine scaling algorithm for linear programming problems with free variables to problems having infinitely many constraints, and explore the relationship between this algorithm and the finite affine scaling method applied to a discretization of the problem.This material is based on research supported by Air Force Office of Scientific Research Grant AFOSR 89-0410.  相似文献   

6.
A trust region and affine scaling interior point method (TRAM) is proposed for a general nonlinear minimization with linear inequality constraints [8]. In the proposed approach, a Newton step is derived from the complementarity conditions. Based on this Newton step, a trust region subproblem is formed, and the original objective function is monotonically decreased. Explicit sufficient decrease conditions are proposed for satisfying the first order and second order necessary conditions.?The objective of this paper is to establish global and local convergence properties of the proposed trust region and affine scaling interior point method. It is shown that the proposed explicit decrease conditions are sufficient for satisfy complementarity, dual feasibility and second order necessary conditions respectively. It is also established that a trust region solution is asymptotically in the interior of the proposed trust region subproblem and a properly damped trust region step can achieve quadratic convergence. Received: January 29, 1999 / Accepted: November 22, 1999?Published online February 23, 2000  相似文献   

7.
In this paper, we present a simpler proof of the result of Tsuchiya and Muramatsu on the convergence of the primal affine scaling method. We show that the primal sequence generated by the method converges to the interior of the optimum face and the dual sequence to the analytic center of the optimal dual face, when the step size implemented in the procedure is bounded by 2/3. We also prove the optimality of the limit of the primal sequence for a slightly larger step size of 2q/(3q–1), whereq is the number of zero variables in the limit. We show this by proving the dual feasibility of a cluster point of the dual sequence.Partially supported by the grant CCR-9321550 from NSF.  相似文献   

8.
We consider the continuous trajectories of the vector field induced by the primal affine scaling algorithm as applied to linear programming problems in standard form. By characterizing these trajectories as solutions of certain parametrized logarithmic barrier families of problems, we show that these trajectories tend to an optimal solution which in general depends on the starting point. By considering the trajectories that arise from the Lagrangian multipliers of the above mentioned logarithmic barrier families of problems, we show that the trajectories of the dual estimates associated with the affine scaling trajectories converge to the so called centered optimal solution of the dual problem. We also present results related to asymptotic direction of the affine scaling trajectories. We briefly discuss how to apply our results to linear programs formulated in formats different from the standard form. Finally, we extend the results to the primal-dual affine scaling algorithm.  相似文献   

9.
The method of steepest descent with scaling (affine scaling) applied to the potential functionq logcx i=1 n logx i solves the linear programming problem in polynomial time forq n. Ifq = n, then the algorithm terminates in no more than O(n 2 L) iterations; if q n + withq = O(n) then it takes no more than O(nL) iterations. A modified algorithm using rank-1 updates for matrix inversions achieves respectively O(n 4 L) and O(n 3.5 L) arithmetic computions.  相似文献   

10.
In this paper we extend and improve the classical affine scaling interior-point Newton method for solving nonlinear optimization subject to linear inequality constraints in the absence of the strict complementarity assumption. Introducing a computationally efficient technique and employing an identification function for the definition of the new affine scaling matrix, we propose and analyze a new affine scaling interior-point Newton method which improves the Coleman and Li affine sealing matrix in [2] for solving the linear inequlity constrained optimization. Local superlinear and quadratical convergence of the proposed algorithm is established under the strong second order sufficiency condition without assuming strict complementarity of the solution.  相似文献   

11.
Interior methods for linear programming were designed mainly for problems formulated with equality constraints and non-negative variables. The formulation with inequality constraints has shown to be very convenient for practical implementations, and the translation of methods designed for one formulation into the other is not trivial. This paper relates the geometric features of both representations, shows how to transport data and procedures between them and shows how cones and conical projections can be associated with inequality constraints.  相似文献   

12.
A new interior point method for the solution of the linear programming problem is presented. It is shown that the method admits a polynomial time bound. The method is based on the use of the trajectory of the problem, which makes it conceptually very simple. It has the advantage above related methods that it requires no problem transformation (either affine or projective) and that the feasible region may be unbounded. More importantly, the method generates at each stage solutions of both the primal and the dual problem. This implies that, contrary to the simplex method, the quality of the present solution is known at each stage. The paper also contains a practical (i.e., deepstep) version of the algorithm.The author is indebted to J. Bisschop, P. C. J. M. Geven, J. H. Van Lint, J. Ponstein, and J. P. Vial for their remarks on an earlier version of this paper.  相似文献   

13.
This paper provides an analysis of the polynomiality of primal-dual interior point algorithms for nonlinear complementarity problems using a wide neighborhood. A condition for the smoothness of the mapping is used, which is related to Zhu’s scaled Lipschitz condition, but is also applicable to mappings that are not monotone. We show that a family of primal-dual affine scaling algorithms generates an approximate solution (given a precision ε) of the nonlinear complementarity problem in a finite number of iterations whose order is a polynomial ofn, ln(1/ε) and a condition number. If the mapping is linear then the results in this paper coincide with the ones in Jansen et al., SIAM Journal on Optimization 7 (1997) 126–140. Research supported in part by Grant-in-Aids for Encouragement of Young Scientists (06750066) from the Ministry of Education, Science and Culture, Japan. Research supported by Dutch Organization for Scientific Research (NWO), grant 611-304-028  相似文献   

14.
An implementation of Karmarkar's algorithm for linear programming   总被引:14,自引:0,他引:14  
This paper describes the implementation of power series dual affine scaling variants of Karmarkar's algorithm for linear programming. Based on a continuous version of Karmarkar's algorithm, two variants resulting from first and second order approximations of the continuous trajectory are implemented and tested. Linear programs are expressed in an inequality form, which allows for the inexact computation of the algorithm's direction of improvement, resulting in a significant computational advantage. Implementation issues particular to this family of algorithms, such as treatment of dense columns, are discussed. The code is tested on several standard linear programming problems and compares favorably with the simplex codeMinos 4.0.  相似文献   

15.
Recently an affine scaling, interior point algorithm ASL was developed for box constrained optimization problems with a single linear constraint (Gonzalez-Lima et al., SIAM J. Optim. 21:361–390, 2011). This note extends the algorithm to handle more general polyhedral constraints. With a line search, the resulting algorithm ASP maintains the global and R-linear convergence properties of ASL. In addition, it is shown that the unit step version of the algorithm (without line search) is locally R-linearly convergent at a nondegenerate local minimizer where the second-order sufficient optimality conditions hold. For a quadratic objective function, a sublinear convergence property is obtained without assuming either nondegeneracy or the second-order sufficient optimality conditions.  相似文献   

16.
We extend the classical affine scaling interior trust region algorithm for the linear constrained smooth minimization problem to the nonsmooth case where the gradient of objective function is only locally Lipschitzian. We propose and analyze a new affine scaling trust-region method in association with nonmonotonic interior backtracking line search technique for solving the linear constrained LC1 optimization where the second-order derivative of the objective function is explicitly required to be locally Lipschitzian. The general trust region subproblem in the proposed algorithm is defined by minimizing an augmented affine scaling quadratic model which requires both first and second order information of the objective function subject only to an affine scaling ellipsoidal constraint in a null subspace of the augmented equality constraints. The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions where twice smoothness of the objective function is not required. Applications of the algorithm to some nonsmooth optimization problems are discussed.  相似文献   

17.
In this paper, we propose a new nonmonotonic interior point backtracking strategy to modify the reduced projective affine scaling trust region algorithm for solving optimization subject to nonlinear equality and linear inequality constraints. The general full trust region subproblem for solving the nonlinear equality and linear inequality constrained optimization is decomposed to a pair of trust region subproblems in horizontal and vertical subspaces of linearize equality constraints and extended affine scaling equality constraints. The horizontal subproblem in the proposed algorithm is defined by minimizing a quadratic projective reduced Hessian function subject only to an ellipsoidal trust region constraint in a null subspace of the tangential space, while the vertical subproblem is also defined by the least squares subproblem subject only to an ellipsoidal trust region constraint. By introducing the Fletcher's penalty function as the merit function, trust region strategy with interior point backtracking technique will switch to strictly feasible interior point step generated by a component direction of the two trust region subproblems. The global convergence of the proposed algorithm while maintaining fast local convergence rate of the proposed algorithm are established under some reasonable conditions. A nonmonotonic criterion should bring about speeding up the convergence progress in some high nonlinear function conditioned cases.  相似文献   

18.
In this paper, we present a variant of the primal affine scaling method, which we call the primal power affine scaling method. This method is defined by choosing a realr>0.5, and is similar to the power barrier variant of the primal-dual homotopy methods considered by den Hertog, Roos and Terlaky and Sheu and Fang. Here, we analyze the methods forr>1. The analysis for 0.50<r<1 is similar, and can be readily carried out with minor modifications. Under the non-degeneracy assumption, we show that the method converges for any choice of the step size . To analyze the convergence without the non-degeneracy assumption, we define a power center of a polytope. We use the connection of the computation of the power center by Newton's method and the steps of the method to generalize the 2/3rd result of Tsuchiya and Muramatsu. We show that with a constant step size such that /(1-)2r > 2/(2r-1) and with a variable asymptotic step size k uniformly bounded away from 2/(2r+1), the primal sequence converges to the relative interior of the optimal primal face, and the dual sequence converges to the power center of the optimal dual face. We also present an accelerated version of the method. We show that the two-step superlieear convergence rate of the method is 1+r/(r+1), while the three-step convergence rate is 1+ 3r/(r+2). Using the measure of Ostrowski, we note thet the three-step method forr=4 is more efficient than the two-step quadratically convergent method, which is the limit of the two-step method asr approaches infinity.Partially supported by the grant CCR-9321550 from NSF.  相似文献   

19.
We describe an interior-point algorithm for monotone linear complementarity problems in which primal-dual affine scaling is used to generate the search directions. The algorithm is shown to have global and superlinear convergence with Q-order up to (but not including) two. The technique is shown to be consistent with a potential-reduction algorithm, yielding the first potential-reduction algorithm that is both globally and superlinearly convergent.Corresponding author. The work of this author was based on research supported by the Office of Scientific Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.The work of this author was based on research supported by the National Science Foundation under grant DDM-9109404 and the Office of Naval Research under grant N00014-93-1-0234. This work was done while the author was a faculty member of the Systems and Industrial Engineering Department at the University of Arizona.  相似文献   

20.
In this paper we show that a variant of the long-step affine scaling algorithm (with variable stepsizes) is two-step superlinearly convergent when applied to general linear programming (LP) problems. Superlinear convergence of the sequence of dual estimates is also established. For homogeneous LP problems having the origin as the unique optimal solution, we also show that 2/3 is a sharp upper bound on the (fixed) stepsize that provably guarantees that the sequence of primal iterates converge to the optimal solution along a unique direction of approach. Since the point to which the sequence of dual estimates converge depend on the direction of approach of the sequence of primal iterates, this result gives a plausible (but not accurate) theoretical explanation for why 2/3 is a sharp upper bound on the (fixed) stepsize that guarantees the convergence of the dual estimates. The work of this author was based on research supported by the Overseas Research Scholars of the Ministry of Education, Science and Culture of Japan, 1992. The work of this author was based on research supported by the National Science Foundation (NSF) under grant DDM-9109404 and the Office of Naval Research (ONR) under grant N00014-93-1-0234. This work was done while the second author was a faculty member of the Systems and Industrial Engineering Department at the University of Arizona.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号