首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let X be a non-void set and A be a subalgebra of \({\mathbb{C}^{X}}\) . We call a \({\mathbb{C}}\) -linear functional \({\varphi}\) on A a 1-evaluation if \({\varphi(f) \in f(X) }\) for all \({f\in A}\) . From the classical Gleason–Kahane–?elazko theorem, it follows that if X in addition is a compact Hausdorff space then a mapping \({\varphi}\) of \({C_{\mathbb{C}}(X) }\) into \({\mathbb{C}}\) is a 1-evaluation if and only if \({\varphi}\) is a \({\mathbb{C}}\) -homomorphism. In this paper, we aim to investigate the extent to which this equivalence between 1-evaluations and \({\mathbb{C}}\) -homomorphisms can be generalized to a wider class of self-conjugate subalgebras of \({\mathbb{C}^{X}}\) . In this regards, we prove that a \({\mathbb{C}}\) -linear functional on a self-conjugate subalgebra A of \({\mathbb{C}^{X}}\) is a positive \({\mathbb{C}}\) -homomorphism if and only if \({\varphi}\) is a \({\overline{1}}\) -evaluation, that is, \({\varphi(f) \in\overline{f\left(X\right)}}\) for all \({f\in A}\) . As consequences of our general study, we prove that 1-evaluations and \({\mathbb{C}}\) -homomorphisms on \({C_{\mathbb{C}}\left( X\right)}\) coincide for any topological space X and we get a new characterization of realcompact topological spaces.  相似文献   

2.
Given an i.i.d sample (Y i , Z i ), taking values in \({\mathbb{R}^{d'}\times\mathbb{R}^d}\), we consider a collection Nadarya–Watson kernel estimators of the conditional expectations \({\mathbb{E}( <\,c_g(z),g(Y)>+d_g(z)\mid Z=z)}\), where z belongs to a compact set \({H\subset \mathbb{R}^d}\), g a Borel function on \({\mathbb{R}^{d'}}\) and c g (·), d g (·) are continuous functions on \({\mathbb{R}^d}\). Given two bandwidth sequences \({h_n<\mathfrak{h}_n}\) fulfilling mild conditions, we obtain an exact and explicit almost sure limit bounds for the deviations of these estimators around their expectations, uniformly in \({g\in\mathcal{G},\;z\in H}\) and \({h_n\le h\le \mathfrak{h}_n}\) under mild conditions on the density f Z , the class \({\mathcal{G}}\), the kernel K and the functions c g (·), d g (·). We apply this result to prove that smoothed empirical likelihood can be used to build confidence intervals for conditional probabilities \({\mathbb{P}( Y\in C\mid Z=z)}\), that hold uniformly in \({z\in H,\; C\in \mathcal{C},\; h\in [h_n,\mathfrak{h}_n]}\). Here \({\mathcal{C}}\) is a Vapnik–Chervonenkis class of sets.  相似文献   

3.
Let \(\mathrm{SM}_{2n}(S^1,\mathbb {R})\) be a set of stable Morse functions of an oriented circle such that the number of singular points is \(2n\in \mathbb {N}\) and the order of singular values satisfies the particular condition. For an orthogonal projection \(\pi :\mathbb {R}^2\rightarrow \mathbb {R}\), let \({\tilde{f}}_0\) and \({\tilde{f}}_1:S^1\rightarrow \mathbb {R}^2\) be embedding lifts of f. If there is an ambient isotopy \(\tilde{\varphi }_t:\mathbb {R}^2\rightarrow \mathbb {R}^2\) \((t\in [0,1])\) such that \({\pi \circ \tilde{\varphi }}_t(y_1,y_2)=y_1\) and \(\tilde{\varphi }_1\circ {\tilde{f}}_0={\tilde{f}}_1\), we say that \({\tilde{f}}_0\) and \({\tilde{f}}_1\) are height isotopic. We define a function \(I:\mathrm{SM}_{2n}(S^1,\mathbb {R})\rightarrow \mathbb {N}\) as follows: I(f) is the number of height isotopy classes of embeddings such that each rotation number is one. In this paper, we determine the maximal value of the function I equals the n-th Baxter number and the minimal value equals \(2^{n-1}\).  相似文献   

4.
If B is a compact connected Lie group and N a finite central subgroup, let \({f\colon B\to B/N}\) be the associated covering morphism. The mapping cylinder \({{\mathrm{MC}}(f)}\) is a compact monoid which we call a covering space semigroup. A prominent example is the classical Möbius band \({\mathbb{M}^2}\). An (L)-semigroup is a compact n-manifold X with connected boundary B together with a monoid structure on X such that B is a subsemigroup of X. Every covering space semigroup with \({|N|=2}\) is an (L)-semigroup, and every nonorientable (L)-semigroup is a covering space semigroup. Here \({\mathbb{M}^2}\) is a guiding example. In general, a covering space semigroup X is not a manifold but does have a well-defined manifold boundary. The study of covering space semigroups leads to the following Theorem. Let B be a compact connected Lie group with a central circle group as a direct factor. Then there exist infinitely many pairwise nonisomorphic covering space semigroups with boundary B, and each such semigroup is a retract of a compact connected Lie group.  相似文献   

5.
Conjugation spaces are spaces with an involution such that the fixed point set of the involution has \({\mathbb{Z} _2}\)-cohomology ring isomorphic to the \({\mathbb{Z} _2}\)-cohomology of the space itself, with the difference that all degrees are divided by two (e.g. \({\mathbb{C} {\rm P}^n}\) with the complex conjugation has \({\mathbb{R} {\rm P}^n}\) as fixed point set). One also requires that a certain conjugation equation is fulfilled. We give a new characterisation of conjugation spaces and apply it to the following realization problem: given M, a closed orientable 3-manifold, does there exist a simply connected 6-manifold X and a conjugation on X with fixed point set M? We give an affirmative answer.  相似文献   

6.
A topological space X is countably paracompact if and only if X satisfies the condition (A): For any decreasing sequence {Fi} of non-empty closed sets with \({\bigcap_{i=1}^{\infty} F_{i} = \emptyset}\) there exists a sequence {Gi} of open sets such that \({\bigcap_{i=1}^{\infty}\overline{G_{i}}=\emptyset}\) and \({F_{i} \subset G_{i}}\) for every i. We will show, by an example, that this is not true in generalized topological spaces. In fact there is a \({\mu}\)-normal generalized topological space satisfying the analogue of A which is not even countably \({\mu}\)-metacompact. Then we study the relationships between countably \({\mu}\)-paracompactness, countably \({\mu}\)-metacompactness and the condition corresponding to condition A in generalized topological spaces.  相似文献   

7.
We prove that a deformation of a hypersurface in an (n + 1)-dimensional real space form \({{\mathbb S}^{n+1}_{p,1}}\) induces a Hamiltonian variation of the normal congruence in the space \({{\mathbb L}({\mathbb S}^{n+1}_{p,1})}\) of oriented geodesics. As an application, we show that every Hamiltonian minimal submanifold in \({{\mathbb L}({\mathbb S}^{n+1})}\) (resp. \({{\mathbb L}({\mathbb H}^{n+1})}\)) with respect to the (para-)Kähler Einstein structure is locally the normal congruence of a hypersurface \({\Sigma}\) in \({{\mathbb S}^{n+1}}\) (resp. \({{\mathbb H}^{n+1}}\)) that is a critical point of the functional \({{\mathcal W}(\Sigma) = \int_\Sigma\left(\Pi_{i=1}^n|\epsilon+k_i^2|\right)^{1/2}}\), where ki denote the principal curvatures of \({\Sigma}\) and \({\epsilon \in \{-1, 1\}}\). In addition, for \({n = 2}\), we prove that every Hamiltonian minimal surface in \({{\mathbb L}({\mathbb S}^{3})}\) (resp. \({{\mathbb L}({\mathbb H}^{3})}\)), with respect to the (para-)Kähler conformally flat structure, is the normal congruence of a surface in \({{\mathbb S}^{3}}\) (resp. \({{\mathbb H}^{3}}\)) that is a critical point of the functional \({{\mathcal W}\prime(\Sigma) = \int_\Sigma\sqrt{H^2-K+1}}\) (resp. \({{\mathcal W}\prime(\Sigma) = \int_\Sigma\sqrt{H^2-K-1}}\)), where H and K denote, respectively, the mean and Gaussian curvature of \({\Sigma}\).  相似文献   

8.
For a family of interpolation norms \({\| \cdot \|_{1,2,s}}\) on \({\mathbb{R}^{n}}\), we provide a distribution over random matrices \({\Phi_s \in \mathbb{R}^{m \times n}}\) parametrized by sparsity level s such that for a fixed set X of K points in \({\mathbb{R}^{n}}\), if \({m \geq C s \log(K)}\) then with high probability, \({\frac{1}{2}\| \varvec{x} \|_{1,2,s} \leq \| \Phi_s (\varvec{x}) \|_1 \leq 2 \| \varvec{x} \|_{1,2,s}}\) for all \({\varvec{x} \in X}\). Several existing results in the literature roughly reduce to special cases of this result at different values of s: For s = n, \({\| \varvec{x} \|_{1,2,n}\equiv \| \varvec{x} \|_{1}}\) and we recover that dimension reducing linear maps can preserve the ?1-norm up to a distortion proportional to the dimension reduction factor, which is known to be the best possible such result. For s = 1, \({\| \varvec{x} \|_{1,2,1}\equiv \| \varvec{x} \|_{2}}\), and we recover an ?2/?1 variant of the Johnson–Lindenstrauss Lemma for Gaussian random matrices. Finally, if \({\varvec{x}}\) is s- sparse, then \({\| \varvec{x} \|_{1,2,s} = \| \varvec{x} \|_1}\) and we recover that s-sparse vectors in \({\ell_1^n}\) embed into \({\ell_1^{\mathcal{O}(s \log(n))}}\) via sparse random matrix constructions.  相似文献   

9.
We discuss the proof of Kazhdan and Lusztig of the equivalence of the Drinfeld category \({\mathcal D}({\mathfrak g},\hbar)\) of \({\mathfrak g}\)-modules and the category of finite dimensional \(U_q{\mathfrak g}\)-modules, \(q=e^{\pi i\hbar}\), for \(\hbar\in{\mathbb C}\setminus{\mathbb Q}^*\). Aiming at operator algebraists the result is formulated as the existence for each \(\hbar\in i{\mathbb R}\) of a normalized unitary 2-cochain \({\mathcal F}\) on the dual \(\hat G\) of a compact simple Lie group G such that the convolution algebra of G with the coproduct twisted by \({\mathcal F}\) is *-isomorphic to the convolution algebra of the q-deformation G q of G, while the coboundary of \({\mathcal F}^{-1}\) coincides with Drinfeld’s KZ-associator defined via monodromy of the Knizhnik–Zamolodchikov equations.  相似文献   

10.
We relate Fuglede–Kadison determinants to entropy of finitely-presented algebraic actions in essentially complete generality. We show that if \({f\in M_{m,n}(\mathbb{Z}(\Gamma))}\) is injective as a left multiplication operator on \({\ell^{2}(\Gamma)^{\oplus n},}\) then the topological entropy of the action of \({\Gamma}\) on the dual of \({\mathbb{Z}(\Gamma)^{\oplus n}/\mathbb{Z}(\Gamma)^{\oplus m}f}\) is at most the logarithm of the positive Fuglede–Kadison determinant of f, with equality if m = n. We also prove that when m = n the measure-theoretic entropy of the action of \({\Gamma}\) on the dual of \({\mathbb{Z}(\Gamma)^{\oplus n}/\mathbb{Z}(\Gamma)^{\oplus n}f}\) is the logarithm of the Fuglede–Kadison determinant of f. This work completely settles the connection between entropy of principal algebraic actions and Fuglede–Kadison determinants in the generality in which dynamical entropy is defined. Our main Theorem partially generalizes results of Li-Thom from amenable groups to sofic groups. Moreover, we show that the obvious full generalization of the Li-Thom theorem for amenable groups is false for general sofic groups. Lastly, we undertake a study of when the Yuzvinskiǐ addition formula fails for a non-amenable sofic group \({\Gamma}\), showing it always fails if \({\Gamma}\) contains a nonabelian free group, and relating it to the possible values of L 2-torsion in general.  相似文献   

11.
Let \(\mathcal S\) be an abelian group of automorphisms of a probability space \((X, {\mathcal A}, \mu )\) with a finite system of generators \((A_1, \ldots , A_d).\) Let \(A^{{\underline{\ell }}}\) denote \(A_1^{\ell _1} \ldots A_d^{\ell _d}\), for \({{\underline{\ell }}}= (\ell _1, \ldots , \ell _d).\) If \((Z_k)\) is a random walk on \({\mathbb {Z}}^d\), one can study the asymptotic distribution of the sums \(\sum _{k=0}^{n-1} \, f \circ A^{\,{Z_k(\omega )}}\) and \(\sum _{{\underline{\ell }}\in {\mathbb {Z}}^d} {\mathbb {P}}(Z_n= {\underline{\ell }}) \, A^{\underline{\ell }}f\), for a function f on X. In particular, given a random walk on commuting matrices in \(SL(\rho , {\mathbb {Z}})\) or in \({\mathcal M}^*(\rho , {\mathbb {Z}})\) acting on the torus \({\mathbb {T}}^\rho \), \(\rho \ge 1\), what is the asymptotic distribution of the associated ergodic sums along the random walk for a smooth function on \({\mathbb {T}}^\rho \) after normalization? In this paper, we prove a central limit theorem when X is a compact abelian connected group G endowed with its Haar measure (e.g., a torus or a connected extension of a torus), \(\mathcal S\) a totally ergodic d-dimensional group of commuting algebraic automorphisms of G and f a regular function on G. The proof is based on the cumulant method and on preliminary results on random walks.  相似文献   

12.
We study the existence of separation theorems by polynomials that are invariant under a group action. We show that if G is a finite subgroup of \(\textit{GL}(n,{\mathbb {C}})\), K is a set in \({\mathbb {C}}^{n}\) that is invariant under the action of G and z is a point in \({\mathbb {C}}^{n}\setminus K\) that can be separated from K by a polynomial Q, then z can be separated from K by a G-invariant polynomial P. Furthermore, if Q is homogeneous then P can be chosen to be homogeneous. As a particular case, if K is a symmetric polynomially convex compact set in \({\mathbb {C}}^{n}\) and \(z\notin K\) then there exists a symmetric polynomial that separates z and K.  相似文献   

13.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

14.
The zero divisor of the theta function of a compact Riemann surface X of genus g is the canonical theta divisor of Pic\({^{(g-1)}}\) up to translation by the Riemann constant \({\Delta}\) for a base point P of X. The complement of the Weierstrass gaps at the base point P gives a numerical semigroup, called the Weierstrass semigroup. It is classically known that the Riemann constant \({\Delta}\) is a half period, namely an element of \({\frac{1}{2}\Gamma_\tau}\) , for the Jacobi variety \({\mathcal{J}(X)=\mathbb{C}^{g}/\Gamma_\tau}\) of X if and only if the Weierstrass semigroup at P is symmetric. In this article, we analyze the non-symmetric case. Using a semi-canonical divisor D0, we express the relation between the Riemann constant \({\Delta}\) and a half period in the non-symmetric case. We point out an application to an algebraic expression for the Jacobi inversion problem. We also identify the semi-canonical divisor D0 for trigonal pointed curves, namely with total ramification at P.  相似文献   

15.
Let \({\varphi: \mathbb{P}^N_K\to\mathbb{P}^N_K}\) be a morphism of degree d ≥ 2 defined over a field K that is algebraically closed field and complete with respect to a nonarchimedean absolute value. We prove that a modified Green function \({\hat{g}_\varphi}\) associated to \({\varphi}\) is Hölder continuous on \({\mathbb{P}^N(K)}\) and that the Fatou set \({\mathcal{F}(\varphi)}\) of \({\varphi}\) is equal to the set of points at which \({\hat{g}_\Phi}\) is locally constant. Further, \({\hat{g}_\varphi}\) vanishes precisely on the set of points P such that \({\varphi}\) has good reduction at every point in the forward orbit \({\mathcal{O}_\varphi(P)}\) of P. We also prove that the iterates of \({\varphi}\) are locally uniformly Lipschitz on \({\mathcal{F}(\varphi)}\) .  相似文献   

16.
Let \({\mathcal{B}^\omega(p, q, B_d)}\) denote the \({\omega}\)-weighted Hardy–Bloch space on the unit ball B d of \({\mathbb{C}^d}\), \({d\ge 1}\). For \({2< p,q < \infty}\) and \({f\in \mathcal{B}^\omega(p, q, B_d)}\), we obtain sharp estimates on the growth of the p-integral means M p (f, r) as \({r\to 1-}\).  相似文献   

17.
In the unit cone\({\mathcal{C} := \{(x, y, z)} \in {\mathbb R}^{3} : {x}^{2} + {y}^{2} < {z}^{2}, {z} > {0}\}\) we establish a geometric maximum principle for H-surfaces, where its mean curvature \({H = H(x, y, z)}\) is optimally bounded. Consequently, these surfaces cannot touch the conical boundary \({\partial \mathcal{C}}\) at interior points and have to approach \({\partial \mathcal{C}}\) transversally. By a nonlinear continuity method, we then solve the Dirichlet problem of the H-surface equation in central projection for Jordan-domains \({\Omega}\) which are strictly convex in the following sense: On its whole boundary \({\partial \mathcal{C}(\Omega)}\) their associate cone \({\mathcal{C}(\Omega) := \{(rx, ry, r) \in {\mathbb R}^{3} : (x, y) \in \Omega, r \in (0,+\infty)}\}\) admits rotated unit cones \({O \circ \mathcal{C}}\) as solids of support, where \({O \in {\mathbb R}^{3\times3}}\) represents a rotation in the Euclidean space. Thus we construct the unique H-surface with one-to-one central projection onto these domains \({\Omega}\) bounding a given Jordan-contour \({\Gamma \subset \mathcal{C} \backslash \{0\}}\) with one-toone central projection.  相似文献   

18.
We prove the stability of the affirmative part of the solution to the complex Busemann–Petty problem. Namely, if K and L are origin-symmetric convex bodies in \({{\mathbb C}^n}\), n = 2 or n = 3, \({\varepsilon >0 }\) and \({{\rm Vol}_{2n-2}(K\cap H) \le {\rm Vol}_{2n-2}(L \cap H) + \varepsilon}\) for any complex hyperplane H in \({{\mathbb C}^n}\) , then \({({\rm Vol}_{2n}(K))^{\frac{n-1}n}\le({\rm Vol}_{2n}(L))^{\frac{n-1}n} + \varepsilon}\) , where Vol2n is the volume in \({{\mathbb C}^n}\) , which is identified with \({{\mathbb R}^{2n}}\) in the natural way.  相似文献   

19.
Let \({p \in (1,\infty)}\), \({s \in (0,1)}\) and \({\Omega \subset {\mathbb{R}^{N}}}\) a bounded open set with boundary \({\partial\Omega}\) of class C 1,1. In the first part of the article we prove an integration by parts formula for the fractional p-Laplace operator \({(-\Delta)_{p}^{s}}\) defined on \({\Omega \subset {\mathbb{R}^{N}}}\) and acting on functions that do not necessarily vanish at the boundary \({\partial\Omega}\). In the second part of the article we use the above mentioned integration by parts formula to clarify the fractional Neumann and Robin boundary conditions associated with the fractional p-Laplacian on open sets.  相似文献   

20.
Our aim in this article is to study the geometry of n-dimensional complete spacelike submanifolds immersed in a semi-Euclidean space \({\mathbb{R}^{n+p}_{q}}\) of index q, with \({1\leq q\leq p}\). Under suitable constraints on the Ricci curvature and on the second fundamental form, we establish sufficient conditions to a complete maximal spacelike submanifold of \({\mathbb{R}^{n+p}_{q}}\) be totally geodesic. Furthermore, we obtain a nonexistence result concerning complete spacelike submanifolds with nonzero parallel mean curvature vector in \({\mathbb{R}^{n+p}_{p}}\) and, as a consequence, we get a rigidity result for complete constant mean curvature spacelike hypersurfaces immersed in the Lorentz–Minkowski space \({\mathbb{R}^{n+1}_{1}}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号