首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
The reduced dynamics of a quantum system interacting with a linear heat bath finds an exact representation in terms of a stochastic Schr?dinger equation. All memory effects of the reservoir are transformed into noise correlations and mean-field friction. The classical limit of the resulting stochastic dynamics is shown to be a generalized Langevin equation, and conventional quantum state diffusion is recovered in the Born-Markov approximation. The non-Markovian exact dynamics, valid at arbitrary temperature and damping strength, is exemplified by an application to the dissipative two-state system.  相似文献   

3.
A unified canonical operator formalism for quantum stochastic differential equations, including the quantum stochastic Liouville equation and the quantum Langevin equation both of the Itô and the Stratonovich types, is presented within the framework of non-equilibrium thermo field dynamics (NETFD). It is performed by introducing an appropriate martingale operator in the Schrödinger and the Heisenberg representations with fermionic and bosonic Brownian motions. In order to decide the double tilde conjugation rule and the thermal state conditions for fermions, a generalization of the system consisting of a vector field and Faddeev-Popov ghosts to dissipative open situations is carried out within NETFD.  相似文献   

4.
The previously published model of the isothermal Maxwell demon as one of models of open quantum systems endowed with the faculty of selforganization is reconstructed here. It describes an open quantum system interacting with a single thermodynamic bath but otherwise not aided from outside. Its activity is given by the standard linear Liouville equation for the system and bath. Owing to its selforganization property, the model then yields cyclic conversion of heat from the bath into mechanical work without compensation. Hence, it provides an explicit thought construction of perpetuum mobile of the second kind, contradicting thus the Thomson formulation of the second law of thermodynamics. No approximation is involved as a special scaling procedure is used which makes the employed kinetic equations exact.  相似文献   

5.
S.M. Deshpande 《Physica A》1975,80(3):287-299
Rae and Davidson have found a striking connection between the averaging method generalised by Kruskal and the diagram technique used by the Brussels school in statistical mechanics. They have considered conservative systems whose evolution is governed by the Liouville equation. In this paper we have considered a class of dissipative systems whose evolution is governed not by the Liouville equation but by the last-multiplier equation of Jacobi whose Fourier transform has been shown to be the Hopf equation. The application of the diagram technique to the interaction representation of the Jacobi equation reveals the presence of two kinds of interactions, namely the transition from one mode to another and the persistence of a mode. The first kind occurs in the treatment of conservative systems while the latter type is unique to dissipative fields and is precisely the one that determines the asymptotic Jacobi equation. The dynamical equations of motion equivalent to this limiting Jacobi equation have been shown to be the same as averaged equations.  相似文献   

6.
Quantum Brownian motion in the strong friction limit is studied based on the exact path integral formulation of dissipative systems. In this limit the time-nonlocal reduced dynamics can be cast into an effective equation of motion, the quantum Smoluchowski equation. For strongly condensed phase environments it plays a similar role as master equations in the weak coupling range. Applications for chemical, mesoscopic, and soft matter systems are discussed and reveal the substantial role of quantum fluctuations.  相似文献   

7.
随机薛定谔级联方程是一种基于波函数的严格量子动力学方法,它可用于研究耦合到玻色子热库的复杂体系中的量子动力学过程. 本综述从开放量子体系费曼路径积分的影响泛函出发,概述了随机薛定谔级联方程的一般理论框架和各种具体表述形式,并通过对复杂体系中超快激发能量转移过程的模拟来展示方法的应用范例和计算效率.  相似文献   

8.
The relation between the distribution of work performed on a classical system by an external force switched on an arbitrary time scale and the corresponding equilibrium free energy difference is generalized to quantum systems. Using the adiabatic representation, we show that this relation holds for isolated systems as well as for systems coupled to a bath described by a master equation. A close formal analogy is established between the present "classical trajectory" picture over populations of adiabatic states and phase fluctuations (dephasing) of a quantum coherence in spectral line shapes, described by the stochastic Liouville equation.  相似文献   

9.
Quantum correlations between two free spinless dissipative distinguishable particles (interacting with a thermal bath) are studied analytically using the quantum master equation and tools of quantum information. Bath-induced coherence and correlations in an infinite-dimensional Hilbert space are shown. We show that for temperature T> 0 the time-evolution of the reduced density matrix cannot be written as the direct product of two independent particles. We have found a time-scale that characterizes the time when the bath-induced coherence is maximum before being wiped out by dissipation (purity, relative entropy, spatial dispersion, and mirror correlations are studied). The Wigner function associated to the Wannier lattice (where the dissipative quantum walks move) is studied as an indirect measure of the induced correlations among particles. We have supported the quantum character of the correlations by analyzing the geometric quantum discord.  相似文献   

10.
The time-convolutionless (TCL) quantum master equation provides a powerful tool to simulate reduced dynamics of a quantum system coupled to a bath. The key quantity in the TCL master equation is the so-called kernel or generator, which describes effects of the bath degrees of freedom. Since the exact TCL generators are usually hard to calculate analytically, most applications of the TCL generalized master equation have relied on approximate generators using second and fourth order perturbative expansions. By using the hierarchical equation of motion (HEOM) and extended HEOM methods, we present a new approach to calculating the exact TCL generator and its high order perturbative expansions. The new approach is applied to the spin-boson model with different sets of parameters, to investigate the convergence of the high order expansions of the TCL generator. We also discuss circumstances where the exact TCL generator becomes singular for the spin-boson model, and a model of excitation energy transfer in the Fenna-Matthews-Olson complex.  相似文献   

11.
研究开放量子系统的量子耗散动力学对于理解许多新奇量子现象背后的机制和实现量子器件的精确量子态控制具有重要意义. 级联运动方程方法已成为研究这类量子耗散动力学最常用的数值方法之一. 然而,在处理强电子关联系统时,准确描述强关联效应需要高的级联截断层数. 这导致级联运动方程方法需要耗费大量物理内存和计算时间. 为了解决该问题,将具有最快耗散速率的耗散模式与其他较慢的耗散模式分离,提出了一种级联运动方程的绝热截断方案. 在单杂质安德森模型上进行的数值测试表明,与传统的方案相比,该截断方案显著地降低了级联运动方程收敛需要的截断层数. 此外,该截断方案缓解了长时间耗散动力学中的数值不稳定性.  相似文献   

12.
13.
Stochastic methods are ubiquitous to a variety of fields, ranging from physics to economics and mathematics. In many cases, in the investigation of natural processes, stochasticity arises every time one considers the dynamics of a system in contact with a somewhat bigger system, an environment with which it is considered in thermal equilibrium. Any small fluctuation of the environment has some random effect on the system. In physics, stochastic methods have been applied to the investigation of phase transitions, thermal and electrical noise, thermal relaxation, quantum information, Brownian motion and so on. In this review, we will focus on the so-called stochastic Schr?dinger equation. This is useful as a starting point to investigate the dynamics of open quantum systems capable of exchanging energy and momentum with an external environment. We discuss in some detail the general derivation of a stochastic Schr?dinger equation and some of its recent applications to spin thermal transport, thermal relaxation, and Bose-Einstein condensation. We thoroughly discuss the advantages of this formalism with respect to the more common approach in terms of the reduced density matrix. The applications discussed here constitute only a few examples of a much wider range of applicability.  相似文献   

14.
Jing J  Yu T 《Physical review letters》2010,105(24):240403
The non-Markovian dynamics of a three-level quantum system coupled to a bosonic environment is a difficult problem due to the lack of an exact dynamic equation such as a master equation. We present for the first time an exact quantum trajectory approach to a dissipative three-level model. We have established a convolutionless stochastic Schr?dinger equation called the time-local quantum state diffusion (QSD) equation without any approximations, in particular, without Markov approximation. Our exact time-local QSD equation opens a new avenue for exploring quantum dynamics for a higher dimensional quantum system coupled to a non-Markovian environment.  相似文献   

15.
《Comptes Rendus Physique》2018,19(6):451-483
In this review, we provide an introduction to and an overview of some more recent advances in real-time dynamics of quantum impurity models and their realizations in quantum devices. We focus on the Ohmic spin–boson and related models, which describe a single spin-1/2 coupled with an infinite collection of harmonic oscillators. The topics are largely drawn from our efforts over the past years, but we also present a few novel results. In the first part of this review, we begin with a pedagogical introduction to the real-time dynamics of a dissipative spin at both high and low temperatures. We then focus on the driven dynamics in the quantum regime beyond the limit of weak spin–bath coupling. In these situations, the non-perturbative stochastic Schrödinger equation method is ideally suited to numerically obtain the spin dynamics as it can incorporate bias fields hz(t) of arbitrary time-dependence in the Hamiltonian. We present different recent applications of this method: (i) how topological properties of the spin such as the Berry curvature and the Chern number can be measured dynamically, and how dissipation affects the topology and the measurement protocol, (ii) how quantum spin chains can experience synchronization dynamics via coupling with a common bath. In the second part of this review, we discuss quantum engineering of spin–boson and related models in circuit quantum electrodynamics (cQED), quantum electrical circuits, and cold-atoms architectures. In different realizations, the Ohmic environment can be represented by a long (microwave) transmission line, a Luttinger liquid, a one-dimensional Bose–Einstein condensate or a chain of superconducting Josephson junctions. We show that the quantum impurity can be used as a quantum sensor to detect properties of a bath at minimal coupling, and how dissipative spin dynamics can lead to new insight in the Mott–superfluid transition.  相似文献   

16.
We consider a one-dimensional Ising model in a transverse magnetic field coupled to a dissipative heat bath. The phase diagram and the critical exponents are determined from extensive Monte Carlo simulations. It is shown that the character of the quantum phase transition is radically altered from the corresponding nondissipative model and the double well coupled to a dissipative heat bath with linear friction. Spatial couplings and the dissipative dynamics combine to form a new quantum criticality which is independent of dissipation strength.  相似文献   

17.
We formulate from first principles a theory of stochastic processes in configuration space. The fundamental equations of the theory are an equation of motion which generalizes Newton's second law and an equation which expresses the condition of conservation of matter. Two types of stochastic motion are possible, both described by the same general equations, but leading in one case to classical Brownian motion behavior and in the other to quantum mechanical behavior. The Schrödinger equation, which is derived here with no further assumption, is thus shown to describe a specific stochastic process. It is explicitly shown that only in the quantum mechanical process does the superposition of probability amplitudes give rise to interference phenomena; moreover, the presence of dissipative forces in the Brownian motion equations invalidates the superposition principle. At no point are any special assumptions made concerning the physical nature of the underlying stochastic medium, although some suggestions are discussed in the last section.  相似文献   

18.
The problem of the coherent state generation with definite parameters for multilevel quantum systems is investigated. The interaction with external environment and stochastic fields can destroy the coherence. The competition of these processes is considered on the basis of the Fokker-Planck equations approach, derived from the master equation for the density matrix of the system. Examples of the coherent states dynamics for two-level atoms in an external stochastic field in a nonideal resonator are considered. Average over the realizations of stochastic fields is performed for the case of the white Gaussian noise and the Kubo-Anderson process. Explicit formulas for probability and shape of radiation line are obtained. The text was submitted by the author in English.  相似文献   

19.
为了能够高效计算非线性光学响应函数,提出了级联方程组的混合海森堡-薛定谔方案以及块矩阵操作方法. 同时,这些方法也与最近发展的级联方程组的最优构建和过滤传播子相结合, 模拟了不同光学四波混频配置下激子二聚体模型体系的相干二维光谱,重点研究了其中分子间转移耦合和激子{激子相互作用的影响.  相似文献   

20.
The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号