首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamically cured polypropylene (PP)/epoxy blends compatibilized with maleic anhydride grafted PP were prepared by the curing of an epoxy resin during melt mixing with molten PP. The morphology and crystallization behavior of dynamically cured PP/epoxy blends were studied with scanning electron microscopy, differential scanning calorimetry, and polarized optical microscopy. Dynamically cured PP/epoxy blends, with the structure of epoxy particles finely dispersed in the PP matrix, were obtained, and the average diameter of the particles slightly increased with increasing epoxy resin content. In a study of the nonisothermal crystallization of PP and PP/epoxy blends, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of the PP component in the PP/epoxy blends. The isothermal crystallization kinetics of PP and dynamically cured PP/epoxy blends were described by the Avrami equation. The results showed that the Avrami exponent of PP in the blends was higher than that of PP, and the crystallization rate was faster than that of PP. However, the crystallization rate decreased when the epoxy resin content was greater than 20 wt %. The crystallization thermodynamics of PP and dynamically cured PP/epoxy blends were studied according to the Hoffman theory. The chain folding energy for PP crystallization in dynamically cured PP/epoxy blends decreased with increasing epoxy resin content, and the minimum of the chain folding energy was observed at a 20 wt % epoxy resin content. The size of the PP spherulites in the blends was obviously smaller than that of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1181–1191, 2004  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - In this paper, isothermal and non-isothermal crystallization behaviour of neat polypropylene (PP), blends of PP/maleic anhydride grafted polypropylene...  相似文献   

3.
The morphology and crystallization behavior of blends of polypropylene (PP) and an ethylene-based thermoplastic elastomer (TPO) were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The SEM images showed a two-phase morphology for these blends. As TPO was partially crystalline, two distinct peaks were observed in both heating and cooling scans of DSC. The crystallization temperature of TPO in blends was higher than pure TPO. In contrast, the crystallization temperature of PP in blends was lower than pure PP. The crystallization behavior of blends was modeled by Avrami equation. It was observed that the presence of TPO accelerated the growth rate of crystals of PP in PP/TPO blends.  相似文献   

4.
The results of studies of equilibrium melting point and crystallization behavior of PBT/PETG blends are reported for the first time. A single composition‐dependent glass‐transition temperature is observed in the DSC studies. The isothermal crystallization studies of the blends indicate retardation in crystallization rate as evidenced by the increase in crystallization half time. The retardation in crystallization rate has been attributed to the miscibility in the molten state and the hindrance to the diffusion of crystallizable units. This assumption is further supported by the composition dependence of the crystallization half time. A composition‐dependent melting point depression has been observed which has been attributed to the possible thermodynamic and morphological effects. The interaction parameter calculated by analyzing equilibrium melting point depression shows composition‐dependent negative values confirming the miscibility of the systems. These results are in good agreement with our earlier results on mechanical and dynamic mechanical properties of PBT/PETG blends. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2439–2444, 1999  相似文献   

5.
Blends were prepared from isotactic polypropylene (iPP) along with its b-nucleated form and poly(vinylidene-fluoride) (PVDF). Melting, and crystallization characteristics as well as structure of the blends were studied by polarized light microscopy (PLM) and differential scanning calorimetry. According to PLM studies, the phase structure of these blends is heterogeneous in the molten state. The temperature range of crystallization of PVDF during cooling is higher than that of iPP. PVDF has a strong α-nucleating effect on iPP. The crystallization of iPP starts on the surface of dispersed PVDF droplets and an α-transcrystalline layer forms on the surface of the crystalline PVDF phase. The iPP matrix crystallizes predominantly in a-form in spite of the presence of a highly active b-nucleating agent. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The effect of clay dispersion on the crystallization behavior of isotactic polypropylene (iPP)-based nanocomposites is reported. The T m0 of the materials was calculated by the method proposed by Marand, the kinetics of crystallization was evaluated by the Avrami analysis and also the Hoffman-Lauritzen theory of crystallization regimes was applied. Montmorillonite was found to depress T m0, to enhance the rate of crystallization and to ease the chain folding of macromolecules. These effects were magnified if clay was exfoliated, rather than intercalated.  相似文献   

7.
8.
In this work, we prepared blends of bisphenol A polycarbonate (PC) and poly(ϵ‐caprolactone) (PCL) in a wide composition range by melt mixing and solution mixing. Two different molecular weights of PCL were used (nominally, 10.000 g/mol, PCL10, and 80.000 g/mol, PCL80). The thermal behavior of both systems was studied via differential scanning calorimetry under dynamic and isothermal conditions. The blends were miscible in the entire composition range in the liquid and amorphous states, as indicated by the single glass‐transition temperature (Tg) exhibited by both the PC/PCL10 and PC/PCL80 blends. The compositional variation of the Tg was accurately described by the Fox equation for the PC/PCL80 blends, whereas slight deviations from this equation were exhibited by the PC/PCL10 blends. For blend compositions containing 40% or more PCL, either one or both blend components crystallized. Crystallization occurred during cooling from the melt or during subsequent heating in the form of cold crystallization. Although PCL crystallization was reduced and its crystallization rate decreased with the addition of PC, PCL was a very effective macromolecular plasticizer for PC, to the extent that crystallization during the scan was detected for some blend compositions. Isothermal crystallization experiments allowed the determination of equilibrium melting points (T) by the Hoffman–Weeks extrapolation method. A T depression was found for both PCL and PC components as the content of the other blend component was increased. The Avrami equation was closely obeyed by both blend components during the isothermal overall crystallization kinetics up to crystalline conversion degrees of 60–70% and with values of Avrami indices ranging from 3 to 4, depending on the crystallization temperature employed. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 771–785, 2001  相似文献   

9.
The compatibilization of incompatible polypropylene (PP)/poly(ethylene oxide) (PEO) blends was studied. The experimental results showed that the graft copolymer [(PP-MA)-g-PEO] of maleated PP(PP-MA) and mono-hydroxyl PEO (PEO-OH) was a good compatibilizer for the PP/PEO blends in which PP-MA also had some compatibilization. The crystallization of the blends was affected by the compatibility between PP and PEO. The interfacial behavior of the compatibilizers had an important effect on crystallization behavior of the PP/PEO blends. PEO showed fractionated crystallization in the PP/PEO blends. This behavior was studied from the view point of the theory of fractionated crystallization. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The crystallization, melting behavior, and morphology of Polypropylene (PP) and PP/Novolac blends were studied by scanning electron microscopy, wide angle X‐ray diffraction, differential scanning calorimetry, and polarized optical microscope. The results showed that the crystallization of PP in PP/Novolac blends was strongly influenced by crystallization temperature, particles size of Novolac, crosslinking, and compatibilizer maleic anhydride‐grafted PP. The Novolac resin could not only affect the crystal structure, but also acted as effective nucleating agents, accelerating the crystallization of PP in the PP/Novolac blends. And the smaller the Novolac particles were, the more effective were the nucleating agent for PP crystallization. Avrami equation was used to analyze the isothermal crystallization kinetics of PP and PP/Novolac blends. The influences of curing and compatibilizer on the crystallization behavior of PP were rather complicated. The crystallization thermodynamics were estimated using the Hoffman theory. The incorporation of cured Novolac and compatibilizer evidently decreased the chain folding energy of PP. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3288–3303, 2006  相似文献   

11.
A series of polypropylene (PP)/polystyrene (PS) blends were prepared by solvent blending with PS‐grafted PP copolymers (PP‐g‐PS) having different PS graft chain length as compatibilizers. The interfacial compatibility was significantly improved with increasing PS graft chain length until the interface was saturated at PS graft chain length being 3.29 × 103 g/mol. The blends were foamed by using pressure‐quenching process and supercritical CO2 as the blowing agent. The cell preferentially formed at compatibilized interface because of low energy barrier for nucleation. Combining with the increased interfacial area, the compatibilized interface lead to the foams with increased cell density compared to the uncompatibilized one. The increase in interfacial compatibility also decreased the escape of gas, held more gas for cell growth, and facilitated the increase in expansion ratio of PP/PS blend foams. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1641–1651, 2008  相似文献   

12.
The unusual mixing behavior of polyisobutylene (PIB) with head-to-head (hhPP) and head-to-tail polypropylene (PP) is studied using large-scale molecular dynamics (MD). The heats of mixing and Flory chi parameters were computed from MD simulations of both blends using a united atom model. The chi parameters from the simulations were estimated from the structure factors using the random phase approximation in analogy with neutron scattering (SANS) experiments. MD simulations for syndiotactic hhPP/PIB predicted a lower critical solution temperature with a chi parameter in very good agreement with SANS experiments on the atactic hhPP/PIB blend. MD simulations also predicted that the isotactic PP/PIB blend was immiscible at high molecular weight in qualitative agreement with cloud point measurements on atactic PP/PIB.  相似文献   

13.
The crystallization behavior of an amorphous polymer, bisphenol A polycarbonate (BAPC), was evaluated. BAPC was crystallized by exposure to diphenylpropane, a component of BAPC, by vapor transportation methods. Furthermore, the surface of BAPC was also crystallized by this method. Crystallized BAPC was employed as a novel simple storage medium, and bit patterns were recorded on its surface by laser irradiation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2307–2313, 2005  相似文献   

14.
Real‐time experiments using small‐angle X‐ray scattering and differential scanning calorimetry on blends of the semicrystalline polyester poly(3‐hydroxybutyrate) (PHB) and amorphous monomer epoxy DGEBA (diglycidyl ether of bisphenol A) were performed. Differences in the processes of melting and re‐crystallization were observed in blends relative to pure PHB. The results obtained in this study indicated that re‐crystallization is more important in blends with 50% DGEBA than in pure PHB. Moreover, segregation toward the interfibrillar region would facilitate re‐crystallization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 882–886  相似文献   

15.
Crystallization behavior of isotactic polypropylene (iPP)/magnesium salt whisker (MSW) composites modified by compatibilizer PP-g-MAH was studied under both isothermal and nonisothermal conditions. Analysis of the isothermal crystallization showed that the Avrami model successfully described the crystallization process. On the basis of Lauritzen–Hoffman theory, a regime transition was observed at about 139 °C for the iPP/MSW composite, and a decrease in the fold surface free energy was calculated with the addition of MSW and PP-g-MAH. The addition of MSW filler and PP-g-MAH compatibilizer distinctly improved the crystallization temperature and accelerated the total crystallization rate of iPP. It was observed that MSW induced the formation of β-iPP but PP-g-MAH suppressed the formation of β-iPP.  相似文献   

16.
Xiong  ZhuoYue  Sun  Yao  Wang  Li  Guo  ZhaoXia  Yu  Jian 《中国科学:化学(英文版)》2012,55(5):807-812
Carbon nanotube (CNT)-filled polycarbonate (PC)/poly(butylene terephthalate) (PBT) and polycarbonate (PC)/poly(ethylene terephthalate) (PET) blends containing 1 wt% CNTs over a wide range of blend compositions were prepared by melt mixing in a torque rheometer to investigate the structure-electrical conductivity relationship. Field emission scanning electron microscopy was used to observe the blend morphology and the distribution of CNTs. The latter was compared with the thermodynamic predictions through the calculation of wetting coefficients. It was found that CNTs are selectively localized in the polyester phase and conductive blends can be obtained over the whole composition range (20 wt%, 50 wt% and 80 wt% PBT) for CNT-filled PC/PBT blends, while conductive CNT-filled PC/PET blends can only be obtained when PET is the continuous phase (50 wt%, 80 wt% PET). The dramatic difference in the electrical conductivity between the two types of CNT-filled PC/polyester blends at a low polyester content (20 wt%) was explained by the size difference of the dispersed phases on the basis of the transmission electron microscope micrographs.  相似文献   

17.
《European Polymer Journal》1996,32(9):1061-1066
The elongational deformation properties of polyethylene terephthalate (PETP) and bisphenol-A polycarbonate (PC) blends were determined using a Rutherford elongational rheometer. The effects of temperature (in the thermoelastic region) and strain rate were studied on blends containing up to 50% PC. Addition of low levels of polycarbonate permits the thermoelastic processing of PETP over a wider temperature range. PETP is particularly sensitive to changes in temperature. Over the range studied, the effect of strain rate on elongational deformation is not very marked. However, the deformation temperature changes the strain levels at which strain stiffening occurs, an important observation in respect of processing and optimisation of physical properties of uniaxially oriented products. The effect of the addition of a phenoxy resin on the blend was studied, and although TEM analysis suggests that it did not compatibilise the blend, it did increase the available extension at higher temperatures.  相似文献   

18.
Transmission electron microscopy (TEM) was used to examine the morphology of blends of nylon 6 and polypropylene (PP) containing various maleated polypropylenes (PP-g-MA). The size of the dispersed polypropylene particles decreases as the content of maleic anhydride in the PP-g-MA increases for binary blends of nylon 6 and the maleated polypropylenes. Ternary blends of nylon 6, PP, and PP-g-MA show morphologies that depend on the content of maleic anhydride of the PP-g-MA and on the miscibility of PP and PP-g-MA. Blends where PP and PP-g-MA are immiscible show a bimodal distribution of particle sizes. Miscibility of the PP and PP-g-MA was determined by TEM using a special staining technique. Experimental observations of miscibility were further corroborated by thermodynamic calculations. The morphology of the ternary blends was also found to be dependent on the ratio of PP/PP-g-MA. By changing this ratio it was possible to induce drastic changes of morphology, going from a continuous nylon 6 phase to a continuous PP phase at a fixed composition. The mechanical properties of these blends were found to be dependent on their morphology. ©1995 John Wiley & Sons, Inc.  相似文献   

19.
Compatibility of the polycarbonates of bisphenol A (PC) and tetramethyl bisphenol A (TMPC) was studied in glassy films cast from CH2Cl2 at room temperature, and above the glass-transition temperature. Blends with different compositions and of different molecular weights were analyzed by DSC and small-angle neutron scattering (SANS). Solution studies were made with light scattering and microscopy. Some of the blend films were two-phased when cast at room temperature, but all films were one-phased in equilibrium above the glass transition. The SANS data demonstrated that phase separation in the cast films was not caused by inherent incompatibility of PC and TMPC, but was induced by the solvent CH2Cl2. The effect is caused by a closed miscibility gap in the ternary solution system PC/TMPC/CH2Cl2.  相似文献   

20.
The microstructure of amorphous polymer blends has been extensively studied in the past, but now there is a growing interest for polymer blends where one or more of the components can crystallize. In this study we investigate such blends, namely miscible polycarbonate (PC)/acrylic blends. Using small angle X-ray scattering (SAXS) measurements, combined with atomic force microscopy (AFM), electron microscopy (SEM), and optical microscopy, we demonstrate that the amorphous acrylic component mostly segregates inside the spherulites between the lamellar bundles (interfibrillar segregation). Varying the PC molecular weight or the mobility of the amorphous component (by changing its molecular weight and Tg) does not change the mode of segregation. So far qualitative predictions of the mode of segregation in semicrystalline polymer blends have been proposed using the δ parameter (the ratio between the diffusion coefficient D of the amorphous component in the blend and the linear crystallization rate G), introduced by Keith and Padden. Our results suggest that other parameters have to be considered to fully understand the segregation process. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2197–2210, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号