首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
N6-(2-Deoxy-α,β-d -erythropentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy⋅dG) is a major DNA lesion produced from 2′-deoxyguanosine under oxidizing conditions. Fapy ⋅ dG is produced from a common intermediate that leads to 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-OxodGuo), and in greater quantities in cells. The impact of Fapy ⋅ dG on DNA structure and function is much less well understood than that of 8-OxodGuo. This is largely due to the significantly greater difficulty in synthesizing oligonucleotides containing Fapy ⋅ dG than 8-OxodGuo. We describe a synthetic approach for preparing oligonucleotides containing Fapy ⋅ dG that will facilitate intensive studies of this lesion in DNA. A variety of oligonucleotides as long as 30 nucleotides are synthesized. We anticipate that the chemistry described herein will provide an impetus for a wide range of studies involving Fapy ⋅ dG.  相似文献   

2.
The effects of Fapy.dG (N-(2-deoxy-alpha,beta-d-erythropentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine)) on the activity of Klenow exo- have been determined by using oligonucleotide substrates containing the lesion at a defined site. Fapy.dG inhibits primer polymerization at two positions: nucleotide incorporation opposite the lesion and extension one nucleotide past the lesion. Klenow exo- is inhibited less by Fapy.dG than by its analogue, MeFapy.dG. Fapy.dG instructs the polymerase to misincorporate deoxyadenosine opposite itself 20 times more frequently than does dG. Extension of the primer containing the Fapy.dG:dA base pair is only slightly less efficient than when dC is opposite the lesion. Overall, Fapy.dG increases the probability that Klenow exo- will make a mistake during replication approximately 80-million fold compared to a template containing the native nucleotide, dG.  相似文献   

3.
Oligodeoxynucleotides containing formamidopyrimidine lesions and C-nucleoside analogues at defined sites were prepared by solid-phase synthesis and in some cases enzymatic ligation. Formamidopyrimidine lesions were introduced as dinucleotides to prevent rearrangement to their pyranose isomers. Oligodeoxynucleotides containing single diastereomers of C-nucleoside analogues of Fapy.dA were introduced by using the respective phosphoramidites. The formamidopyrimidine lesions reduce the T(M) of dodecamers relative to their unmodified nucleotide counterparts when opposite the nucleotide proper base-pairing partner. However, duplexes containing Fapy.dG-dA mispairs melt significantly higher than those comprised of dG-dA. All duplexes containing Fapy.dA-dX or its C-nucleoside analogue melt lower than the respective complexes containing dA-dX. Studies of the alkaline lability of oligodeoxynucleotides containing formamidopyrimidine lesions indicate that Fapy.dA is readily identified as an alkali-labile lesion with use of piperidine (1.0 M, 90 degrees C, 20 min), but Fapy.dG is less easily identified in this manner.  相似文献   

4.
An improved phosphoramidite method is described to prepare oligonucleotides modified with the acyclic, achiral monomers 1. Examination of dimers, prepared on solid support or in solution, showed that phosphortriester dimers containing the allylic unit 1 were unstable towards bases, whereas phosphordiester dimers were stable. Phosphordiester dimers were obtained by replacing cyanoethyl phosphoramidites 2 with phosphoramidites 3, which gave phosphordiesters directly upon oxidation. The phosphordiester dimers were found to be stable towards capping and oxidation, but were somewhat labile towards acids. By reducing the contact time to acids during detritylation it was possible to prepare oligonucleotides containing 4 or 8 modified A, G or T units. The modified oligonucleotides hybridized to complementary DNA and RNA, although with reduced affinity (DeltaT(m) per modification -1 to -5 degrees C).  相似文献   

5.
Thermolytic groups may serve as alternatives to the conventional 2-cyanoethyl group for phosphate/thiophosphate protection in solid-phase oligonucleotide synthesis to prevent DNA alkylation by acrylonitrile generated under the basic conditions used for oligonucleotide deprotection. Additionally, thermolytic groups are attractive in the context of engineering a "heat-driven" process for the synthesis of oligonucleotides on diagnostic microarrays. In these regards, the potential application of pyridine derivatives as thermolytic phosphate/thiophosphate protecting groups has been investigated. Specifically, 2-pyridinepropanol and 2-[N-methyl-N-(2-pyridyl)]aminoethanol were incorporated into deoxyribonucleoside phosphoramidites 7a-d and 9, which were found as efficient as 2-cyanoethyl deoxyribonucleoside phosphoramidites in solid-phase oligonucleotide synthesis. Whereas the removal of 3-(2-pyridyl)-1-propyl phosphate/thiophosphate protecting groups from oligonucleotides is effected within 30 min upon heating at 55 degrees C in concentrated NH4OH or in an aqueous buffer at pH 7.0, cleavage of 2-[N-methyl-N-(2-pyridyl)]aminoethyl groups occurs spontaneously when their phosphate or phosphorothioate esters are formed during oligonucleotide synthesis. The deprotection of these groups follows a cyclodeesterification process generating the bicyclic salts 13 and 14 as side products. These salts do not alkylate or otherwise modify any DNA nucleobases and do not desulfurize a phosphorothioate diester model under conditions mimicking large-scale oligonucleotide deprotection.  相似文献   

6.
The nucleoside triphosphates of N6-(2-deoxy-alpha,beta-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy.dGTP) and its C-nucleoside analogue (beta-C-Fapy.dGTP) were synthesized. The lability of the formamide group required that nucleoside triphosphate formation be carried out using an umpolung strategy in which pyrophosphate was activated toward nucleophilic attack. The Klenow fragment of DNA polymerase I from Escherichia coli accepted Fapy.dGTP and beta-C-Fapy.dGTP as substrates much less efficiently than it did dGTP. Subsequent extension of a primer containing either modified nucleotide was less affected compared to when the native nucleotide is present at the 3'-terminus. The specificity constants are sufficiently large that nucleoside triphosphate incorporation could account for the level of Fapy.dG observed in cells if 1% of the dGTP pool is converted to Fapy.dGTP. Similarly, polymerase-mediated introduction of beta-C-Fapy.dG could be useful for incorporating useful amounts of this nonhydrolyzable analogue for use as an inhibitor of base excision repair. The kinetic viability of these processes is enhanced by inefficient hydrolysis of Fapy.dGTP and beta-C-Fapy.dGTP by MutT, the E. coli enzyme that releases pyrophosphate and the corresponding nucleoside monophosphate upon reaction with structurally related nucleoside triphosphates.  相似文献   

7.
A convenient procedure for the preparation of the fluorescent dye 4',5'-dichloro-2',7'-dimethoxy-5(6)-carboxyfluorescein (JOE) is reported; the overall yield achieved starting from isovanillin is 10 times higher (40% vs 4%) compared to the known procedure. Isomers (5- and 6-) are easily chromatographically separable as pentafluorophenyl esters of 3',6'-O-bis(cyclohexylcarbonyl) derivatives. Four non-nucleoside JOE phosphoramidites based on 5- and 6-isomers and flexible 6-aminohexanol (AH) or rigid 4-trans-aminocyclohexanol (ACH) linkers have been prepared and used for oligonucleotide labeling. Spectral and photophysical properties of 5'-JOE-modified oligonucleotides have been studied. Fluorescence quantum yield of the dye correlates with the nature of the linker (rigid vs flexible) and with the presence of dG nucleosides in close proximity to a JOE residue.  相似文献   

8.
3-(2'-Deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one (M1dG) is the major reaction product of deoxyguanosine with malondialdehyde or base propenals. M1dG undergoes hydrolytic ring-opening to N2-oxopropenyl-deoxyguanosine (N2OPdG) under basic conditions. We report that ring-opening of M1dG as a nucleoside or in oligonucleotides is a reversible second-order reaction with hydroxide ion. NMR and UV analysis revealed N2OPdG(-) to be the only product of M1dG ring-opening in basic solution. The rate constant for reaction of M1dG with hydroxide is 3.8 M(-1) s(-1), and the equilibrium constant is calculated to be 2.1 +/- 0.3 x 10(4) M(-1) at 25 degrees C. Equilibrium constants determined by spectroscopic analysis of the reaction end-point or by thermodynamic analysis of rate constants determined over a range of temperatures yielded a value 2.5 +/- 0.2 x 10(4) M(-1). Kinetic analysis of ring-opening of M1dG in oligonucleotides indicated the rate constant for ring-opening is decreased 10-fold compared to that in the nucleoside. Flanking purines or pyrimidines did not significantly alter the rate constants for ring-opening, but purines flanking M1dG enhanced the rate constant for the reverse reaction. A mechanism is proposed for ring-opening of M1dG under basic conditions and a role is proposed for duplex DNA in accelerating the rate of ring-opening of M1dG at neutral pH.  相似文献   

9.
[formula: see text] The title exocyclic radical (2) is generated via photochemical cleavage of 5-(phenylthiomethyl)-2'-deoxyuridine (8). The latter thionucleoside (8) was successfully incorporated into DNA oligomers by automated DNA synthesis using phosphoramidite chemistry. UV exposure of 8 containing oligonucleotides under (an)aerobic conditions gives rise to specific base lesions. The photoproducts have been isolated and further characterized on the basis of detailed NMR and mass spectrometric analyses.  相似文献   

10.
Triplex-forming oligonucleotides (TFOs) containing 9-deazaguanine N7-(2′-deoxyribonucleoside) 1a and halogenated derivatives 1b,c were synthesized employing solid-phase oligonucleotide synthesis. For that purpose, the phosphoramidite building blocks 5a – c and 8a – c were synthesized. Multiple incorporations of 1a – c in place of dC were performed within TFOs, which involved the sequence of five consecutive 1a – c ⋅ dG ⋅ dC triplets as well as of three alternating 1a – c ⋅ dG ⋅ dC and dT ⋅ dA ⋅ dT triplets. These TFOs were designed to bind in a parallel orientation to the target duplex. Triplex forming properties of these oligonucleotides containing 1a – c in the presence of Na+ and Mg2+ were studied by UV/melting-curve analysis and confirmed by circular-dichroism (CD) spectroscopy. The oligonucleotides containing 1a in the place of dC formed stable triplexes at physiological pH in the case of sequence of five consecutive 1a ⋅ dG ⋅ dC triplets as well as three alternating 1a – c ⋅ dG ⋅ dC and dT ⋅ dA ⋅ dT triplets. The replacement of 1a by 9-halogenated derivatives 1b,c further enhanced the stability of DNA triplexes. Nucleosides 1a – c also stabilized duplex DNA.  相似文献   

11.
3-(2'-Deoxy-beta-D-erythro-pentofuranosyl)pyrimido[1,2-alpha]purin-10(3H)-one (M1dG) is the major product of the reaction of deoxyguanosine with malondialdehyde (MDA). M1dG blocks replication by DNA polymerases in vitro and is mutagenic in vivo. M1dG reacts with hydroxide to form the N2-(3-oxo-1-propenyl)deoxyguanosine anion (N2OPdG-). This reaction is pH-dependent and reverses under neutral and acidic conditions to form M1dG. Here we describe the kinetics and mechanism of the ring-closure reaction in both the nucleoside and oligonucleotides. Kinetic analysis of absorbance and fluorescence changes demonstrates that ring-closure is biphasic, leading to the rapid formation of an intermediate that slowly converts to M1dG in a general-acid-catalyzed reaction. The dependence of the rate of the rapid phase on pH reveals the pKa for protonated N2OPdG is 6.9. One-dimensional 1H NMR and DQF-COSY experiments identified two distinct intermediates, N2OPdG-H and 8-hydroxy-6,7-propenodeoxyguanosine (HO-Prene-dG), that are formed upon acidification of N2OPdG-. Characterization of ring-closure in single-stranded and in melted duplex oligonucleotides shows M1dG formation is also acid-catalyzed in single-stranded oligonucleotides and that the denaturation of an oligonucleotide duplex enhances ring-closure. This work details the complexity of ring-closure in the nucleoside and oligonucleotides and provides new insight into the role of duplex DNA in catalyzing ring-opening and ring-closing of M1dG and N2OPdG.  相似文献   

12.
A general and versatile method for the site-specific incorporation of polypyridine Ru(II) and Os(II) complexes into DNA oligonucleotides using solid-phase phosphoramidite chemistry is reported. Novel nucleosides containing a [(bpy)(2)M(3-ethynyl-1,10-phenanthroline)](2+) (M = Ru, Os) metal center covalently attached to the 5-position in 2'-deoxyuridine are synthesized, and their electrochemical as well as photophysical properties are studied. The Ru(II) nucleoside exhibits a rather long-lived excited state in phosphate buffer pH 7.0 (tau = 1.08 micros) associated with a relatively high emission quantum efficiency (phi = 0.051). The solvent dependence of the absorption and emission spectra is consistent with an emissive MLCT state where charge localization takes place on the extended heterocycle-linked phenanthroline. In contrast, the Os(II)-containing nucleoside is quite nonemissive in aqueous environment (tau = 0.027 micros, phi = 1 x 10(-4)). The metal-containing nucleosides are converted into their phosphoramidites and are utilized for the high-yield preparation of modified oligonucleotides. The novel oligonucleotides, characterized by absorption and emission spectroscopy, enzymatic digestion, and electrophoresis, form stable duplexes. Circular dichroism spectra confirm that the global conformation of the double helix is not altered by the presence of these polypyridyl complexes in the major groove. Metal-containing phosphoramidites with predetermined absolute configuration at the octahedral coordination center are synthesized and utilized for the synthesis of diasteromerically pure metal-containing DNA oligonucleotides. Emission spectroscopy suggests a higher protection of the Delta metal center from the bulk solvent and better accommodation within the major groove.  相似文献   

13.
[reaction: see text] Two series of seco-pseudonucleoside synthons were synthesized from (R)-(+)-alpha-hydroxy-gamma-butyrolactone and (R)-(-)-pantolactone by aminolysis, side-chain protection, dimethoxytritylation, and phosphitylation or solid-phase attachment. The phosphoramidites and solid supports were used in automated DNA synthesis to prepare oligonucleotides modified with one or more 2,4-dihydroxybutyramide units bearing side-chain reporter groups. These new oligonucleotide modification reagents allow the introduction of a label into any desired position within an oligonucleotide chain during solid-phase assembly.  相似文献   

14.
分别采用格氏试剂和三氯化磷三步取代法合成了4个新的烷基修饰磷酸残基的亚磷酸酰胺单体, 其结构经1H NMR和31P NMR表征. 利用这些单体合成模型序列5'-dTTTx TT-3', 考察了单体及寡聚核苷酸序列在DNA/RNA合成条件下的稳定性, 提出了固相合成含有烷基修饰磷酸残基的寡聚核苷酸序列裂解及脱保护条件.  相似文献   

15.
The 5'-phosphorylated oligonucleotides (5'-pONs) are currently synthesized using expensive and sensitive modified phosphoramidite reagents. In this work, a simple, cost-effective, efficient, and automatable method is presented, based on the controlled oxidation of the 5'-terminal alcohol followed by a β-elimination reaction. The latter reaction leads to the removal of the terminal 5'-nucleoside and subsequent formation of the 5'-phosphate moiety. Thus, chemical phosphorylation of oligonucleotides (DNA or RNA) is achieved without using modified phosphoramidites.  相似文献   

16.
Among the various phosphate/thiophosphate protecting groups suitable for solid-phase oligonucleotide synthesis, the 3-(N-tert-butylcarboxamido)-1-propyl group is one of the most convenient, as it can be readily removed, as needed, under thermolytic conditions at neutral pH. The deprotection reaction proceeds rapidly (t(1/2) approximately 100 s) through an intramolecular cyclodeesterification reaction involving the amide function and the release of the phosphate/thiophosphate group as a 2-(tert-butylimino)tetrahydrofuran salt. Incorporation of the 3-(N-tert-butylcarboxamido)-1-propyl group into the deoxyribonucleoside phosphoramidites 1a-d is achieved using inexpensive raw materials. The coupling efficiency of 1a-d in the solid-phase synthesis of d(ATCCGTAGCTAAGGTCATGC) and its phosphorothioate analogue is comparable to that of commercial 2-cyanoethyl deoxyribonucleoside phosphoramidites. These oligonucleotides were phosphate/thiophosphate-deprotected within 30 min upon heating at 90 degrees C in Phosphate-Buffered Saline (PBS buffer, pH 7.2). Since no detectable nucleobase modification or significant phosphorothioate desulfurization occurs, the 3-(N-tert-butylcarboxamido)-1-propyl group represents an attractive alternative to the 2-cyanoethyl group toward the large-scale preparation of therapeutic oligonucleotides.  相似文献   

17.
Kimura T  Kawai K  Majima T 《Organic letters》2005,7(26):5829-5832
[graph: see text] We describe the synthesis of new environmentally sensitive fluorescence probes to elucidate DNA structures. DNA oligonucleotides containing fluorophore dan (6-(dimethylamino)-2-acylnaphthalene)-modified dC or dG were able to monitor the microenvironmental changes in both the major and minor grooves of DNA with a B- to A-DNA conformational transition and RNA hybridization.  相似文献   

18.
The 2,6-diamino-4-hydroxy-5-formamidopyrimidine of 2'-deoxyguanosine (FaPydG) is one of the major DNA lesions found after oxidative stress in cells. To clarify the base pairing and coding potential of this major DNA lesion with the aim to estimate its mutagenic effect, we prepared oligonucleotides containing a cyclopentane based analogue of the DNA lesion (cFaPydG). In addition, oligonucleotides containing the cyclopentane analogue of 2'-deoxyguanosine (cdG), and oligonucleotides containing 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were synthesized. The thermodynamic stability of duplexes containing these building blocks and all canonical counterbases were determined by concentration dependent melting-point measurements (van't Hoff plots). The data reveal that cFaPydG greatly destabilizes a DNA duplex (DeltaDeltaG degrees (298K) approximately 2-4 kcal mol(-1)). The optimal base pairing partner for the cFaPydG lesion is dC. Investigation of duplexes containing dG and cdG shows that the effect of substituting the deoxyribose by a cyclopentane moiety is marginal. The data also provide strong evidence that the FaPydG lesion is unable to form a base pair with dA. Our computational studies indicate that the syn-conformation required for base pairing with dA is energetically unfavorable. This is in contrast to 8-oxodG for which the syn-conformation represents the energetic minimum. Kinetic primer extension studies using S. cerevisiae Pol eta reveal that cFaPydG is replicated in an error-free fashion. dC is inserted 2-3 orders of magnitude more efficiently than dT or dA, showing that FaPydG is a lesion which retains the coding potential of dG. This is also in contrast to 8-oxodG, for which base pairing with dC and dA was established.  相似文献   

19.
We report the design and synthesis of 2'-fluoro cyclohexenyl nucleic acid (F-CeNA) pyrimidine phosphoramidites and the synthesis and biophysical, structural, and biological evaluation of modified oligonucleotides. The synthesis of the nucleoside phosphoramidites was accomplished in multigram quantities starting from commercially available methyl-D-mannose pyranoside. Installation of the fluorine atom was accomplished using nonafluorobutanesulfonyl fluoride, and the cyclohexenyl ring system was assembled by means of a palladium-catalyzed Ferrier rearrangement. Installation of the nucleobase was carried out under Mitsunobu conditions followed by standard protecting group manipulations to provide the desired pyrimidine phosphoramidites. Biophysical evaluation indicated that F-CeNA shows behavior similar to that of a 2'-modified nucleotide, and duplexes with RNA showed slightly lower duplex thermostability as compared to that of the more rigid 3'-fluoro hexitol nucleic acid (FHNA). However, F-CeNA modified oligonucleotides were significantly more stable against digestion by snake venom phosphodiesterases (SVPD) as compared to unmodified DNA, 2'-fluoro RNA (FRNA), 2'-methoxyethyl RNA (MOE), and FHNA modified oligonucleotides. Examination of crystal structures of a modified DNA heptamer duplex d(GCG)-T*-d(GCG):d(CGCACGC) by X-ray crystallography indicated that the cyclohexenyl ring system exhibits both the (3)H(2) and (2)H(3) conformations, similar to the C3'-endo/C2'-endo conformation equilibrium seen in natural furanose nucleosides. In the (2)H(3) conformation, the equatorial fluorine engages in a relatively close contact with C8 (2.94 ?) of the 3'-adjacent dG nucleotide that may represent a pseudo hydrogen bond. In contrast, the cyclohexenyl ring of F-CeNA was found to exist exclusively in the (3)H(2) (C3'-endo like) conformation in the crystal structure of the modified A-form DNA decamer duplex [d(GCGTA)-T*-d(ACGC)](2.) In an animal experiment, a 16-mer F-CeNA gapmer ASO showed similar RNA affinity but significantly improved activity compared to that of a sequence matched MOE ASO, thus establishing F-CeNA as a useful modification for antisense applications.  相似文献   

20.
Second generation 2'-O,4'-C-methylene-linked nucleotides 1-3 containing hypoxanthine, 2,6-diaminopurine, and 2-aminopurine nucleobases were synthesized and incorporated into locked nucleic acid (LNA) oligonucleotides by means of the automated phosphoramidite method. The required phosphoramidite monomeric units were efficiently prepared via convergent synthesis. The glycosyl donor 4 was stereoselectively coupled with hypoxanthine and 6-chloro-2-aminopurine to give the 4'-C-branched nucleosides 5 and 17. The methods for conversion of 5 and 17 into phosphoramidites 11, 25, and 29 were developed and described in full details for the first time. Hybridization properties of LNA octamers containing the new LNA nucleotides were assessed against perfect and singly mismatched DNA. The binding studies revealed that all LNA octamers hybridize very efficiently to DNA following Watson-Crick base-pairing rules with increased binding affinity compared to the DNA analogues. The unique properties of the nucleotides 1-3 make them very useful for further strengthening of the LNA technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号