首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, we intend to derive conditions characterizing globally optimal solutions of quadratic 0-1 programming problems. By specializing the problem of maximizing a convex quadratic function under linear constraints, we find explicit global optimality conditions for quadratic 0-1 programming problems, including necessary and sufficient conditions and some necessary conditions. We also present some global optimality conditions for the problem of minimization of half-products.  相似文献   

2.
In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also obtain necessary global optimality conditions, which are different from the Lagrange multiplier conditions for special classes of quadratic optimization problems. These classes include weighted least squares with ellipsoidal constraints, and quadratic minimization with binary constraints. We discuss examples which demonstrate that our optimality conditions can effectively be used for identifying global minimizers of certain multi-extremal non-convex quadratic optimization problems. The work of Z. Y. Wu was carried out while the author was at the Department of Applied Mathematics, University of New South Wales, Sydney, Australia.  相似文献   

3.
In this paper we examine non-convex quadratic optimization problems over a quadratic constraint under unknown but bounded interval perturbation of problem data in the constraint and develop criteria for characterizing robust (i.e. uncertainty-immunized) global solutions of classes of non-convex quadratic problems. Firstly, we derive robust solvability results for quadratic inequality systems under parameter uncertainty. Consequently, we obtain characterizations of robust solutions for uncertain homogeneous quadratic problems, including uncertain concave quadratic minimization problems and weighted least squares. Using homogenization, we also derive characterizations of robust solutions for non-homogeneous quadratic problems.  相似文献   

4.
In this paper, an entropy-like proximal method for the minimization of a convex function subject to positivity constraints is extended to an interior algorithm in two directions. First, to general linearly constrained convex minimization problems and second, to variational inequalities on polyhedra. For linear programming, numerical results are presented and quadratic convergence is established.Corresponding author. His research has been supported by C.E.E grants: CI1* CT 92-0046.  相似文献   

5.
We present a new heuristic for the global solution of box constrained quadratic problems, based on the classical results which hold for the minimization of quadratic problems with ellipsoidal constraints. The approach is tested on several problems randomly generated and on graph instances from the DIMACS challenge, medium size instances of the Maximum Clique Problem. The numerical results seem to suggest some effectiveness of the proposed approach.  相似文献   

6.
In this paper, we present Lagrange multiplier necessary conditions for global optimality that apply to non-convex optimization problems beyond quadratic optimization problems subject to a single quadratic constraint. In particular, we show that our optimality conditions apply to problems where the objective function is the difference of quadratic and convex functions over a quadratic constraint, and to certain class of fractional programming problems. Our necessary conditions become necessary and sufficient conditions for global optimality for quadratic minimization subject to quadratic constraint. As an application, we also obtain global optimality conditions for a class of trust-region problems. Our approach makes use of outer-estimators, and the powerful S-lemma which has played key role in control theory and semidefinite optimization. We discuss numerical examples to illustrate the significance of our optimality conditions. The authors are grateful to the referees for their useful comments which have contributed to the final preparation of the paper.  相似文献   

7.
The identification problems, i.e., the problems of finding unknown parameters in distributed systems from the observations are very important in modern control theory. The solutions of these identification problems can be obtained by solving the equations of the first kind. However, the solutions are often unstable. In other words, they are not continuously dependent on the data. The regularization or Tihonov's regularization is known as one of the stabilizing algorithms to solve these non well-posed problems. In this paper is studied the regularization method for identification of distributed systems. Several approximation theorems are proved to solve the equations of the first kind. Then, identification problems are reduced to the minimization of quadratic cost functionals by virtue of these theorems. On the other hand, it is known that the statistical methods for identification such as the maximum likelihood lead to the minimization problems of certain quadratic functionals. Comparing these quadratic cost functionals, the relations between the regularization and the statistical methods are discussed. Further, numerical examples are given to show the effectiveness of this method.  相似文献   

8.
Projection-iterative version of the pointwise relaxation method   总被引:1,自引:0,他引:1  
We propose a projection-iterative modification of the pointwise relaxation method for the solution of variational problems of mechanics of deformable solids. For the general case of the problem of conventional minimization of functionals in Hilbert spaces, convergence is proved. For the problem of minimization of quadratic functional, a theoretical justification is performed by the finite-element method.  相似文献   

9.
We propose two linearly convergent descent methods for finding a minimizer of a convex quadratic spline and establish global error estimates for the iterates. One application of such descent methods is to solve convex quadratic programs, since they can be reformulated as problems of unconstrained minimization of convex quadratic splines. In particular, we derive several new linearly convergent algorthms for solving convex quadratic programs. These algorithms could be classified as row-action methods, matrix-splitting methods, and Newton-type methods.  相似文献   

10.
11.
Summary In this paper, we shall be concerned with the solution of constrained convex minimization problems. The constrained convex minimization problems are proposed to be transformable into a convex-additively decomposed and almost separable form, e.g. by decomposition of the objective functional and the restrictions. Unconstrained dual problems are generated by using Fenchel-Rockafellar duality. This decomposition-dualization concept has the advantage that the conjugate functionals occuring in the derived dual problem are easily computable. Moreover, the minimum point of the primal constrained convex minimization problem can be obtained from any maximum point of the corresponding dual unconstrained concave problem via explicit return-formulas. In quadratic programming the decomposition-dualization approach considered here becomes applicable if the quadratic part of the objective functional is generated byH-matrices. Numerical tests for solving obstacle problems in 1 discretized by using piecewise quadratic finite elements and in 2 by using the five-point difference approximation are presented.  相似文献   

12.
In this paper we consider the single machine scheduling problems with exponential sum-of-logarithm-processing-times based learning effect. By the exponential sum-of-logarithm-processing-times based learning effect, we mean that the processing time of a job is defined by an exponent function of the sum of the logarithm of the processing times of the jobs already processed. We consider the following objective functions: the makespan, the total completion time, the sum of the quadratic job completion times, the total weighted completion time and the maximum lateness. We show that the makespan minimization problem, the total completion time minimization problem and the sum of the quadratic job completion times minimization problem can be solved by the smallest (normal) processing time first (SPT) rule, respectively. We also show that the total weighted completion time minimization problem and the maximum lateness minimization problem can be solved in polynomial time under certain conditions.  相似文献   

13.
This series of papers addresses three interrelated problems: the solution of a variational minimization problem, the solution of integral equations, and the solution of an initial-valued system of integro-differential equations. It will be shown that a large class of minimization problems requires the solution of linear Fredholm integral equations. It has also been shown that the solution of a linear Fredholm integral equation is identical to the solution of a Cauchy system. In this paper, we bypass the Fredholm integral equations and show that the minimization problem directly implies a solution of a Cauchy system. This first paper in the series looks only at quadratic functionals and scalar functions.This research was sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Grant No. AFOSR-77-3383.  相似文献   

14.
The observation that at leasts constraints are active when the Hessian of the Lagrangian hass negative eigenvalues at a local minimizer is used to obtain two results: (i) a class of nearly concave quadratic minimization problem can be solved in polynomial time; (ii) a class of indefinite quadratic test problems can be constructed with a specified number of positive and negative eigenvalues and with a known global minimizer.The authors thank the reviewers for their constructive comments. The first author was supported by the National Science Foundation Grant DMS-85-20926 and by the Air Force Office of Scientific Research Grant AFOSR-ISSA-86-0091.  相似文献   

15.
This paper considers specific aspects of implementing an algorithm for solving problems of quadratic programming, which is based on a reduced gradient method. In the subspace of superbasis variables, minimization is carried out by a conjugate gradient method. Some examples of solving test problems are given.  相似文献   

16.
Convex piecewise quadratic functions (CPQF) play an important role in mathematical programming, and yet their structure has not been fully studied. In this paper, these functions are categorized into difference-definite and difference-indefinite types. We show that, for either type, the expressions of a CPQF on neighboring polyhedra in its domain can differ only by a quadratic function related to the common boundary of the polyhedra. Specifically, we prove that the monitoring function in extended linear-quadratic programming is difference-definite. We then study the case where the domain of the difference-definite CPQF is a union of boxes, which arises in many applications. We prove that any such function must be a sum of a convex quadratic function and a separable CPQF. Hence, their minimization problems can be reformulated as monotropic piecewise quadratic programs.This research was supported by Grant DDM-87-21709 of the National Science Foundation.  相似文献   

17.
We introduce a new and very simple algorithm for a class of smooth convex constrained minimization problems which is an iterative scheme related to sequential quadratically constrained quadratic programming methods, called sequential simple quadratic method (SSQM). The computational simplicity of SSQM, which uses first-order information, makes it suitable for large scale problems. Theoretical results under standard assumptions are given proving that the whole sequence built by the algorithm converges to a solution and becomes feasible after a finite number of iterations. When in addition the objective function is strongly convex then asymptotic linear rate of convergence is established.  相似文献   

18.
In this paper, we analyze the exponential method of multipliers for convex constrained minimization problems, which operates like the usual Augmented Lagrangian method, except that it uses an exponential penalty function in place of the usual quadratic. We also analyze a dual counterpart, the entropy minimization algorithm, which operates like the proximal minimization algorithm, except that it uses a logarithmic/entropy proximal term in place of a quadratic. We strengthen substantially the available convergence results for these methods, and we derive the convergence rate of these methods when applied to linear programs.Research supported by the National Science Foundation under Grant DDM-8903385, and the Army Research Office under Grant DAAL03-86-K-0171.  相似文献   

19.
Many polynomial and discrete optimization problems can be reduced to multiextremal quadratic type models of nonlinear programming. For solving these problems one may use Lagrangian bounds in combination with branch and bound techniques. The Lagrangian bounds may be improved for some important examples by adding in a model the so-called superfluous quadratic constraints which modify Lagrangian bounds. Problems of finding Lagrangian bounds as a rule can be reduced to minimization of nonsmooth convex functions and may be successively solved by modern methods of nondifferentiable optimization. This approach is illustrated by examples of solving polynomial-type problems and some discrete optimization problems on graphs.  相似文献   

20.
An algorithm for quadratic minimization with simple bounds is introduced, combining, as many well-known methods do, active set strategies and projection steps. The novelty is that here the criterion for acceptance of a projected trial point is weaker than the usual ones, which are based on monotone decrease of the objective function. It is proved that convergence follows as in the monotone case. Numerical experiments with bound-constrained quadratic problems from CUTE collection show that the modified method is in practice slightly more efficient than its monotone counterpart and has a performance superior to the well-known code LANCELOT for this class of problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号