首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The paper reports studies on the glass transition kinetics of Se78Ge22 and Se68Ge22M10 (M?=?Cd, In, Pb) chalcogenide glasses. Differential scanning calorimetry (DSC) was performed at different heating rates under non-isothermal conditions. Different kinetic parameters, such as glass transition temperature (T g) and the activation energy of the glass transition (E t) have been calculated to investigate the effects of Cd, In and Pb additives on the glass transition kinetics of glassy Se78Ge22 alloy.  相似文献   

2.
C. Dohare  A. Kumar 《Phase Transitions》2013,86(11-12):1064-1074
The calorimetric measurements have been made in glassy Se70Te30 and Se70Te28M2 (M?=?Ag, Cd, and Zn) alloys using non-isothermal differential scanning calorimetry technique to see the effects of Ag, Cd, and Zn additives on the glass transition kinetics of binary Se70Te30. From the heating rate dependence of glass transition temperature, T g, different kinetic parameters of glass transition have been evaluated. The composition dependence of glass transition temperature T g and the related activation energy (Et ) is also discussed.  相似文献   

3.
H. Kumar  N. Chandel 《Phase Transitions》2016,89(11):1103-1118
In this communication, we report the results of calorimetric measurements on the samples of recently synthesized multi-component glassy alloys of Se78?xTe20Sn2Bix (0 ≤ x ≤ 6) system. For calorimetric study of glass transition kinetics, differential scanning calorimetry (DSC) technique has been used in non-isothermal mode. Peak glass transition temperature (Tg) is determined using the DSC scans. Kinetic parameters A and B of glass transition are determined using heating rate dependence of Tg. Activation energy of glass transition (Eg) has been calculated using Moynihan and Kissinger methods. Glass-forming ability and thermal stability are also determined using Hurby and Saad–Poulin relations, respectively.  相似文献   

4.
We present a comprehensive study of gold nanoparticle embedding into polystyrene (PS) surfaces at temperatures ranging from T g + 8 K to T g − 83 K and times as long as 105 minutes. This range in times and temperatures allows the first concurrent observation of and differentiation between surface and bulk behavior in the 20nm region nearest the free surface of the polymer film. Of particular importance is the temperature region near the bulk glass transition temperature where both surface and bulk processes can be measured. The results indicate that for the case of PS, enhanced surface mobility only exists at temperatures near or below the bulk T g value. The surface relaxation times are only weakly temperature dependent and near T g , the enhanced mobility extends less than 10nm into the bulk of the film. The results suggest that both the concept of a “surface glass transition” and the use of glass transition temperatures to measure local mobility near interfaces may not universally apply to all polymers. The results can also be used to make a quantitative connection to molecular dynamics simulations of polymer films and surfaces.  相似文献   

5.
Crystallization process of Se85-xTe15Sbx (x = 2.7, 7.5, 10 and 15 at %) chalcogenide glasses has been studied by using differential scanning calorimetry (DSC) with different heating rates. These glasses are found to have a double glasses transition and overlapped crystalline phases for Se70Te15Sb15 glass while single glasses transition and single crystallization stage for other glasses. Glass transition temperature, Tg, onset crystallization temperature, Tc, and peak crystallization temperature, Tp, are found to be dependent on composition and heating rates. Values of various kinetic parameters such as activation energy of glass transition, Eg, activation energy of crystallization, Ec, Hurby number, Hr, thermal stability, Sp, rate constant, Kp, and Avrami exponent, n, are determined for the present systems. Results indicate that rate of crystallization is dependent on thermal stability and glass-forming ability. Crystallization mechanism occurs in two dimensions for studied compositions. Crystalline phases resulting from DSC and scanning electron microscopy have been identified by using X-ray diffraction.  相似文献   

6.
Two distinct single-chain particles of poly(N-isopropylacrylamide) (PNIPAM) in the state of loose coil and compact globule, have been prepared successfully below and above the lower critical solution temperature (LCST) in extreme dilute aqueous solution by the freeze-drying method, respectively. During the preparation of the compact globular single-chain sample, the surfactant of sodium n-dodecyl sulfate (SDS) was added into the system to prevent aggregation of globular single chains formed at a temperature above the LCST. After all the coil has been transformed into the compact globular particle, the SDS molecules were removed by dialysis. The glass transition temperature (Tg) of the two single-chain samples has been measured by differential scanning calorimetery (DSC) in comparison with that of bulk polymer. It was found that the Tg of the single-chain sample in compact-globule state was very near to that of the bulk polymer, whereas the Tg of the single-chain sample in loose-coil state was approximately 6 K lower than that of the bulk polymer. After treating the sample with repeated DSC cycles, the Tg of the single-chain sample in loose-coil state rose up successively near to that of the bulk polymer. These results have been explained in terms of the effect of entanglement on the mobility of the polymer segments in the two distinct single-chain samples.  相似文献   

7.
The effect of In content on do electrical conductivity and DTA of the system (As2Se3)1-x. Inx, x=0, 0.01, 0.05, has been studied. The electrical energy gap was found to increase for an In content 0.01% and decrease for an In content 0.05%. The samples exhibit the three conduction mechanisms proposed by Mott and Davis. The activation energy was calculated for each mechanism. The effect of heating rate on the transition temperatures (T g,T c,T m) was studied and the variation of the crystallization-peak position was used to calculate the activation energy and the order of the crystallization process.  相似文献   

8.
The glass transition in Ge x Se1−x ) (0·1 ⩽x ⩽ 0·25) glasses has been investigated using the photoacoustic (PA) technique. It is found that the PA amplitude and phase undergo anomalous changes at the glass transition temperatureT g. The amplitude has critical minimum and phase has maximum values atT g. The variation of the thermal diffusivity, determined by measuring the frequency dependence of the PA amplitude and phase, with temperature shows sharp decrease near the glass transition temperature. The temperature dependence of the optical energy gap also has been measured and it shows a decrease with temperature for all compositions, the rate of decrease being higher for temperatures greater thanT g.  相似文献   

9.
The T g of organic liquids confined to nanoporous matrices and that of thin polymer films can decrease dramatically from the bulk value. One possible explanation for this phenomenon is the development of hydrostatic tension during vitrification under confinement that results in a concomitant increase in the free volume. Here we present experimental evidence and modeling results for ortho-terphenyl (o-TP) confined in pores as small as 11.6 nm that indicate that, although there is an important hydrostatic tension in the liquid in the pores, it does not develop until near the reduced T g of the constrained material --well below the bulk T g. Enthalpy recovery for the o-TP in the nanopores exhibits accelerated physical aging relative to the bulk, as well as a leveling off of the fictive temperature at equilibrium values greater than the aging temperature. An adaptation of the structural recovery model that incorporates vitrification under isochoric conditions is able to provide a quantitative explanation for the apparently anomalous aging observed in nanopore confined liquids and in thin polymeric films. The results strongly support the existence of an intrinsic size effect as the cause of the reduced T g. Received 3 September 2001  相似文献   

10.
By means of molecular-dynamics simulation we study a flexible and a semiflexible bead-spring model for a polymer melt on cooling through the glass transition. Results for the glass transition temperature T g and for the elastic properties of the glassy state are presented. We find that T g increases with chain length N and is for all N larger for the semiflexible model. The N dependence of T g is compared to experimental results from the literature. Furthermore, we characterize the polymer glass below T g via its elastic properties, i.e., via the Lamé coefficients λ and μ. The Lamé coefficients are determined from the fluctuation formalism which allows to split λ and μ into affine (Born term) and nonaffine (fluctuation term) contributions. We find that the fluctuation term represents a substantial correction to the Born term. Since the Born terms for λ and μ are identical, the fluctuation terms are responsible for the different temperature dependence of the Lamé coefficients. While λ decreases linearly on approaching T g from below, the shear modulus μ displays a much stronger decrease near T g. From the present simulation data it is not possible to decide whether μ takes a finite value at T g, as would be expected from mode-coupling theory, or vanishes continuously, as suggested by recent work from replica theory.  相似文献   

11.
Using ellipsometry, we characterized the nanoconfinement effect on the glass transition temperature (T gof supported polystyrene (PS) films employing two methods: the intersection of fits to the temperature (Tdependences of rubbery- and glassy-state thicknesses, and the transition mid-point between rubbery- and glassy-state expansivities. The results demonstrate a strong effect of thickness: Tg(bulk)-Tg(23 nm) = 10 °\ensuremath T_{{\rm g}}({\rm bulk})-T_{{\rm g}}(23{\,\mbox{nm}})= 10 ^{\circ} C. The T -range needed for accurate measurement increases significantly with decreasing thickness, an effect that arises from the broadening of the transition with confinement and a region below T g where expansivity slowly decreases with decreasing T . As determined from expansivities, the T g breadth triples in going from bulk films to a 21-nm-thick film; this broadening of the transition may be a more dramatic effect of confinement than the T g reduction itself. In contrast, there is little effect of confinement on the rubbery- and glassy-state expansivities. Compared with ellipsometry, T g ’s from fluorescence agree well in bulk films but yield lower values in nanoconfined films: T g(bulk) - T g(23 nm) = 15° C via fluorescence. This small difference in the T g confinement effect reflects differences in how fluorescence and ellipsometry report “average T g ” with confinement. With decreasing nanoscale thickness, fluorescence may slightly overweight the contribution of the free-surface layer while ellipsometry may evenly weight or underweight its contribution.  相似文献   

12.
Abstract

The nodal-line semimetals are new and very promising materials for technological applications. To understand their structural, mechanical, lattice dynamical and thermal properties in detail, we have investigated theoretical study of ZrXY (X = Si,Ge; Y = S,Se) using Density Functional Theory for the first time. Obtained lattice parameters are in excellent agreement with previous experimental data. These nodal-line semimetals obey the mechanical stability conditions for tetragonal structure. We obtain Bulk modulus, Shear modulus, Poisson’s ratio, Pugh ratio, sound velocities and thermal conductivity using elastic constant. All the materials behave in brittle manner. Poisson’s ratio data and Bader charge analysis results indicate that the ionic bonding characters are dominant. Next, the lattice dynamical properties are calculated. Phonon density of states shows that nodal-line semimetals ZrXY are also dynamically stable in the tetragonal structure. Raman and IR active phonon modes are determined. Highest optical mode at gamma point corresponds to A2u (IR active) and Eg (Raman active) modes for ZrXSe and ZrXS, respectively. Based on phonon density of states, thermal properties such as Helmholtz free energy, entropy, heat capacity at constant volume and Debye temperature are also presented and discussed.  相似文献   

13.
Dynamic mechanical spectroscopy and differential scanning calorimetry investigations of segmental dynamics are reported for net-poly(methyl methacrylate)-co-poly(n-butyl acrylate) copolymer networks. Three characteristic temperatures, namely, Vogel (T), glass transition (T g ), and crossover (T c ), were used to define cooperativity range and a new reduced temperature parameter (Solidness, S). The results showed that broadness of the α -dispersion (glass transition) and cooperativity length scale at the glass transition temperature decreased with increasing butyl acrylate content and T g -scaled temperature dependence of the relaxation time (fragility). However, the cooperativity range (T c –T), decreased with increasing fragility index. Furthermore, the solidness at T g (S(T g )) was nearly independent of chemical structure of the samples. Finally, a correlation was found between two measures of cooperativity length scale in the glass transition region, namely, average volume of cooperatively rearranging regions, V CRR , and the number of basic units in an act of rearrangement in the glass transition region, Z(T g ), determined from two completely independent experimental techniques.  相似文献   

14.
Thin films of Sb, Se and Sb2Se3 are deposited onto glass and irradiated by a cw-Ar+ laser beam. The kinetics of crystallization and oxidation are traced via the time dependence of optical reflectivity and temperature, T, of the irradiated zone. For Sb2Se3, transformations start abruptly when T attains a critical value, T c, independently of the laser beam power. These T c values are comparable to the ones observed under furnace annealing conditions.  相似文献   

15.
The evolution of autoadhesive strength, σ, with healing temperature, T h, at the symmetric amorphous polystyrene (PS)?PS interfaces of the samples with vitrified bulk has been used to characterize a low-temperature limit of the surface glass transition temperature T g surface(low). The existence of a linear relationship between the square root of σ and T h has been found for both polydisperse and monodisperse polymers. By the extrapolation of straight lines σ 1/2 ? T h to σ 1/2 = 0, the values of T g surface(low) have been determined and compared with those of a high-temperature limit of T g surface, T g surface(high), measured earlier. The differences between T g surface(low) and T g surface(high) have been found to be insignificant, 10–20°C. Using an average value of the shift of T g surface(low) with healing time, t h, the quasi-equilibrium value of the surface glass transition temperature of amorphous PS T surface has been estimated to be 10–15°C.  相似文献   

16.
The heat capacity of maltitol has been measured with an adiabatic calorimeter for the crystal from 100 K to 425 K (T m = 420 K), for the glass from 249 K to T g (around 311 K) and for the liquid from T g to 400 K. The heat of melting is 55.068 kJ/mol. The calorimetric glass transition occurs at about T g = 311 K with a sudden jump of the heat capacity ΔC p (T g ) of about 243.6 J/(K mol). The excess entropy between the undercooled liquid and the crystal was calculated from the heat capacity data and was used to estimate the Kauzmann temperature T K which was found 50 K below T g . ΔC p (T g ) and T K for maltitol were compared to other compounds like sugars, polyol and hydrogen bonded liquids. It has been found that the glass former maltitol is a "fragile" liquid on the thermodynamic point of view.  相似文献   

17.
Dynamical spin fluctuations in SrCr8–xGa4+xO19 a frustrated spin system on a kagomé lattice, is examined by the longitudinal field muon spin relaxation technique. This system shows a spin-glass (SG)-like cusp in the susceptibility atT g=3.5(2) K. The slowing down of Cr spin fluctuations is found to occur over a very wide temperature rangeT g<T<30T g. AsT/T g 0 these fluctuations remain without static polarization (order parameter). Such strong fluctuations belowT g have not been observed before in a conventional SG system.  相似文献   

18.
La1? x Sr x MnO3 perovskite manganite materials with different compositions (x?=?0.28, 0.31 and 0.36) have been prepared employing solid-state reaction technique. On-line evaluation of ultrasonic velocities and longitudinal attenuation of the above samples has been done over a wide range of temperatures using the transmission method. The observed anomalies in velocities, attenuation and elastic moduli reveal the occurrence of lattice softening and hardening near Curie temperature. The observed dramatic hardening in sound velocities and softening in attenuation are correlated with the phase transition, i.e. ferromagnetic to paramagnetic. The increase in magnitude of maximum velocity with change in Sr content at T c indicates the existence of linear magnetostriction effect. The elastic moduli study elucidates the observations made from the above-mentioned studies. The variation in the ultrasonic velocities, longitudinal attenuation and its derived parameters help us to understand the competitions between ferromagnetism and paramagnetism.  相似文献   

19.
The dielectric permittivity of Ni-doped Li2Ge7O15 crystals was studied in the vicinity of the ferroelectric phase transition. Introduction of Ni has been shown to suppress the dielectric anomaly and to reduce substantially the transition temperature. A temperature hysteresis in ɛ (T) has been observed in nominally pure and Ni-doped Li2Ge7O15 crystals near the transition point. Measurements performed under cooling from the paraphase reveal dispersion of dielectric permittivity at Debye relaxation frequencies of the order of 104–105 Hz at T c . It is proposed that the hysteresis phenomena and the low-frequency dispersion are caused by residual defects (of the type of random local fields), which become polarized in the ferroelectric phase and become disordered above T c . Fiz. Tverd. Tela (St. Petersburg) 40, 2198–2201 (December 1998)  相似文献   

20.
Effects of silane temperature (T g) before glow-discharge on the optical and transport properties of hydrogenated amorphous silicon (a-Si:H) thin films were investigated. The optical measurements show that the refractive index increases with increasing T g. The transport characterizations show that when T g increases, the dark conductivity increases. However, the temperature coefficient of resistance decreases. In addition, after holding at 130°C for 20 h, the resistance variation, ΔR/R, of the films deposited at T g = room temperature (10.8%) is much larger than those deposited at silane temperatures of 80°C (3%) and 160°C (2%). This can be attributed to different rates of defect creation in a-Si:H films caused by various T g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号