首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
Three-phase geranyl acetate emulsions stabilized by a non-ionic surfactant, Laureth 4, were prepared with a constant weight fraction of a lamellar liquid crystal and varied aqueous to oil phase weight ratios according to the phase diagram. The appearance and micrographs of the drop pattern versus time were recorded. As expected, emulsions with the lower values of the water to oil (W/O) ratio appeared to be of the W/O variety while the two more stable emulsions with the highest W/O ratio appeared as oil to water (O/W). Considering the surfactant exclusive solubility in the oil, this result was unexpected and the emulsions were investigated as to their structure. Unpredictably, all the emulsions were of the O/W kind; including the highest ratio of oil to water. The reason for this unanticipated outcome was the lamellar liquid crystal being dispersed into the aqueous phase at the slightest perturbation.  相似文献   

2.
The phase diagram of fragrance oil, geranyl acetate, water, and a surfactant, Laureth 4, was used to calculate the surfactant association structures present in emulsions with constant O/W ratio for increased fractions of surfactant. The liquid crystal appeared in the emulsion at a critical value of the surfactant fraction and additional surfactant caused an approximately linear increase of it, while the fraction of the aqueous phase experienced a corresponding reduction. The result of the calculations was confirmed by optical microscopy observation with the samples between crossed polarizers. The calculations revealed the formation of vesicles from the liquid crystal to result in a drastic reduction of the “free” aqueous phase, due to the amount of the aqueous liquid forming the core of the vesicle.  相似文献   

3.
The ternary phase diagram for N-[3-lauryloxy-2-hydroxypropyl]-L-arginine L-glutamate (C12HEA-Glu), a new amino acid-type surfactant, /oleic acid (OA)/water system was established. The liquid crystal and gel complex formations between C12HEA-Glu and OA were applied to a preparation of water-in-oil (W/O) emulsions. Stable W/O emulsions containing liquid paraffin (LP) as the oil and a mixture of C12HEA-Glu and OA as the emulsifier were formed. The preparation of stable W/O emulsions containing 85 wt% water phase was also possible, in which water droplets would be polygonally transformed and closely packed, since the maximum percentage of inner phase is 74% assuming uniformly spherical droplets. Water droplets would be taken into the liquid crystalline phase (or the gel complex) and the immovable water droplets would stabilize the W/O emulsion system. The viscosity of emulsions abruptly increased above the 75 wt% water phase (dispersed phase). The stability of W/O emulsions with a lower weight ratio of OA to C12HEA-Glu and a higher ratio of water phase was greater. This unusual phenomenon may be related to the formation of a liquid crystalline phase between C12HEA-Glu and OA, and the stability of the liquid crystal at a lower ratio of oil (continuous phase). W/O and oil-in-water (O/W) emulsions containing LP were selectively prepared using a mixture of C12HEA-Glu and OA since the desirable hydrophile-lipophile balance (HLB) number for the emulsification was obtainable by mixing the two emulsifiers.  相似文献   

4.
The hydrophile-lipophile property of the sucrose monododecanoate changes from hydrophilic to lipophilic by adding an alcohol as a cosurfactant. With the addition of a short-alkyl-chain alcohol (pentanol, hexanol), the surfactant forms the middle-phase microemulsion whereas a lamellar liquid crystal (L!) appears with a medium- or long-chain alcohol (heptanol, octanol, decanol) at the balanced state in water/ SE/ cosurfactant/ decane system. The effect of changing oil was also studied in the presence of a middle-chain cosurfactant (heptanol). A short-chain aromatic oil (m-xylene) forms middle-phase microemulsion whereas a longer aliphatic one (hexadecane) forms lamellar liquid crystalline phase in a dilute region when the HLB of surfactant is balanced in a given system. O/W emulsions become stable on the hydrophilic-surfactant-rich side whereas W/O emulsions are stable on the cosurfactant-rich side. Emulsions are very unstable in the three-phase regions. However, when the lamellar phase is produced, emulsions become stable at the balanced state because water and oil are incorporated in L! phase in the longer cosurfactant systems such as water/ SE/ octanol/ decane and water/ SE/ decanol/ decane.  相似文献   

5.
Triton X-100/C10H21OH/H2O体系微乳液与溶致液晶   总被引:1,自引:0,他引:1  
关于离子型表面活性剂生成的微乳液与溶致液晶已有不少研究,非离子型表面活性剂生成的微乳液与港致液晶的应用正在引起人们的重视,但由于药物提纯的困难,对其物理化学性质的研究还不多见.本文以非离子表面活性剂TritonX-100/C10H21OH/H2O体系为例,研究了非离子型表面活性剂微乳液和溶致液晶的生成及其结构特性.1实验部分试剂ThitonX-100(Aldrich公司,分析纯)正癸醇(分析纯)、水为一次蒸馏水微乳液区域和层状液晶区域的确定方法及小角x射线衍射测定方法同文献,实验温度20±0.1℃.2结果与讨论2·IThtonX-100、CIOH…  相似文献   

6.
Formation of a normal (not temporary) W/O/W multiple emulsion via the one-step method as a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes has been recently reported. Critical features of this process include the emulsification temperature (corresponding to the ultralow surface tension point), the use of a specific nonionic surfactant blend and the surfactant blend/oil phase ratio, and the addition of the surfactant blend to the oil phase. The purpose of this study was to investigate physicochemical properties in an effort to gain a mechanistic understanding of the formation of these emulsions. Bulk, surface, and interfacial rheological properties of adsorbed nonionic surfactant (CremophorRH40 and Span80) films were investigated under conditions known to affect W/O/W emulsion formation. Bulk viscosity results demonstrated that CremophorRH40 has a higher mobility in oil compared than in water, explaining the significance of the solvent phase. In addition, the bulk viscosity profile of aqueous solutions containing CremophorRH40 indicated a phase transition at around 78 ± 2 °C, which is in agreement with cubic phase formation in the Winsor III region. The similarity in the interfacial elasticity values of CremophorRH40 and Span80 indicated that canola oil has a major effect on surface activity, showing the significance of vegetable oil. The highest interfacial shear elasticity and viscosity were observed when both surfactants were added to the oil phase, indicating the importance of the microstructural arrangement. CremophorRH40/Span80 complexes tended to desorb from the solution/solution interface with increasing temperature, indicating surfactant phase formation as is theoretically predicted in the Winsor III region. Together these interfacial and bulk rheology data demonstrate that one-step W/O/W emulsions form as a result of the simultaneous occurrence of phase-transition processes in the Winsor III region and explain the critical formulation and processing parameters necessary to achieve the formation of these normal W/O/W emulsions.  相似文献   

7.
Water-in-oil (W/O) emulsions of the water/C12E5/isooctanol/isooctane system have been prepared at 25° C. Phase behavior studies of the system with constant (2.5 and 6 wt.%) isooctanol concentration showed that the surfactant becomes more lipophilic with the increase in the alkanol concentration. Emulsification was carried out using four low-energy emulsification methods using the slow addition of one or various components to the rest of them, with gentle agitation. Emulsions with low-polydis-persity were obtained when the emulsification process started with a single lamellar liquid crystalline phase. If in addition to a lamellar liquid crystalline phase, other phases, such as excess water phase, were initially present, emulsions with intermediate polydispersity were produced. When a lamellar liquid crystalline phase was not involved and the spontaneous natural curvature of the surfactant was not changed during emulsification, highly polydisperse emulsions were obtained.  相似文献   

8.
We have investigated the dynamic rheological properties of concentrated multiple emulsions to characterize their amphiphile composition at interfaces. Multiple emulsions (W1/O/W2) consist of water droplets (W1) dispersed into oil globules (O), which are redispersed in an external aqueous phase (W2). A small-molecule surfactant and an amphiphilic polymer were used to stabilize the inverse emulsion (W1 in oil globules) and the inverse emulsion (oil globules in W2), respectively. Rheological and interfacial tension measurements show that the polymeric surfactant adsorbed at the globule interface does not migrate to the droplet interfaces through the oil phase. This explains, at least partly, the stability improvement of multiple emulsions as polymeric surfactants are used instead of small-molecule surfactants.  相似文献   

9.
维生素C对表面活性剂体系相行为的影响   总被引:3,自引:1,他引:2  
维生素C(VC)能提高表面活性剂十六烷基三甲基溴化铵(CTAB)在水中的溶解度,具有助溶作用;且能提高n-C5H11OH在O/W微乳液中的增溶量和水在W/O微乳液中的增溶量,O/W与W/O微乳液区域同时扩大,具有助溶-增溶作用。VC的助溶作用与助溶-增溶作用均具有一定的选择性,只对阳离子表面活性剂CTAB体系有效,VC助溶-增溶作用的机理是同时增加W/O和O/W微乳液的稳定性和层状液晶向双连续结构  相似文献   

10.
A three-step model of the transitional phase inversion (TPI) process for the formation of water-in-oil (W/O) emulsions is presented. Three types of emulsions exist in an emulsification process at different oil–water ratios and hydrophilic–lipophilic balance (HLB). A stable W/O emulsion was obtained using Sorbitan oleate (Span 80) and polyoxyethylenesorbitan monooleate (Tween 80) with a specified HLB and oil volume fraction. Oil was added into water, which contained the water-soluble surfactant, to dissolve the oil-soluble surfactant. This route allowed TPI to occur, and an interesting emulsification process was observed by varying the HLB, which corresponded to the change in the oil–water ratio. Two types of emulsions in the emulsification process were found: transition emulsion 1 (W/O/W high internal phase emulsion) and target emulsion 2 (W/O emulsion with low viscosity). This study describes the changes that occurred in the emulsification process.  相似文献   

11.
含有十二烷基酚聚氧乙烯(10)醚的溶致液晶体系的研究   总被引:9,自引:0,他引:9  
本文以非离子表面活性剂十二烷基酚聚氧乙烯(10)醚(TX-10)/苯乙烯/水组成的三元体系为研究对象, 绘制了三元相图, 选取液晶区域作为研究对象, 配制系列样品, 摄制了纹理照片, 用小角X光衍射法测定了液晶中各种组分变化时间的层间距, 并结合^2H NMR谱图和纹理照片的对照以及互为补充的分析, 为精确区分液晶结构提供了新的途径。这不仅对于基础理论研究, 同时对于日用化工和帮次采油都具有一定指导意义。  相似文献   

12.
In this paper, multiple emulsions containing liquid crystals were prepared successfully and the influence of formulation parameters on the formation mechanism was studied. Moreover, differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) spectra analysis and stability analysis were used to characterise the property of them. The results showed that the chemical structure of water-in-oil (W/O) emulsifiers directly impacted on the formation of multiple structure, but the effect on the formation of liquid crystal structure was negligible. With the gap of the polarity between inner and outer liquid oils decreased, both multiple structure and liquid crystal structure were harder to form. The content of sodium chloride in internal aqueous phase, which should be neither too high nor too low, has great impact on the formulation of multiple structure. It was easier to form two structures simultaneously when the carbon chain length of fatty alcohols was closer to that of emulsifier C22 alkyl polyglucoside (202). DSC elucidated the phase transitions of water in the liquid crystal layer and the W/O emulsions. SAXS indicated that the liquid crystal orientation was lamellar. The stability analysis showed that the presence of liquid crystal structure had a significant contribution to the stability of the multiple emulsions.  相似文献   

13.
A new O/W (oil-in-water) emulsification system was developed using the amphiphilic polymer HHM-HEC (hydrophobically-hydrophilically modified hydroxyethylcellulose) and a lipophilic surfactant. HHM-HEC was used as a thickener and polymeric surfactant, and the addition of small quantities of various types of nonionic lipophilic surfactant (hydrophilic-lipophilic balance <5) decreased the droplet size of several types of oil due to a lowering of the tension at the water/oil interface. The oil droplets were held by the strong network structure of the aqueous HHM-HEC solution, preserving the O/W phase without inversion. These stable O/W emulsions were prepared without the addition of hydrophilic surfactants and thus show improved water repellency.  相似文献   

14.
Undecylglycerylether-modified silicone (GES; the glycerylether-type surfactant with a silicone segment and alkyl chains (carbon number, 11) as the hydrophobic portion) forms a molecular aggregate (M.A.) with a small amount of water. This M.A. is similar to the reversed hexagonal liquid crystal formed by alpha-mono long-chain alkylglycerylether (3-isooctadecyloxy-1,2-propanediol; GE). From the investigation of the phase behavior in the water/GES/polydimethylsiloxane (PDMS) ternary system, a wide three-phase region of water (W)+M.A.+oil (O) was observed. As this M.A. is insoluble in PDMS and easily orients in the interface between water and PDMS, the high water content silicone W/O emulsion using GES as a surfactant is well stabilized. However, as the PDMS content increased this W/O emulsion became less stable. In order to improve this stability, mixtures of GES and polyoxyethylene-modified silicone (PS) were applied to the silicone emulsion as co surfactant. By application of a PS with a methyl group at the end cap of the polyoxyethylene chain (PSM), the emulsion became most stable at a GES/PSM ratio of 1 : 2, and at the same time, the interfacial tension between the oil phase and the water phase became minimal. The reason for this was studied by the measurement of spin-lattice relaxation times (T(1)) of the alkyl chains of GES in the GES/PS/water system by (13)C NMR. We assumed that the W/O silicone emulsions were stabilized by the efficient orientation of the aggregates in the interface between the silicone phase and the water phase by using PSM as a cosurfactant. Copyright 2001 Academic Press.  相似文献   

15.
A gel emulsion with high internal oil phase volume fraction was formed via an inversion process induced by a water–oil ratio change. The process involved the formation of intermediate multiple emulsions prior to inversion. The multiple emulsions contain a liquid crystal formed by the surfactant with water; this was both predicted by the equilibrium phase diagram as well as observed using polarization microscopy. These multiple emulsions were more stable compared to alternative multiple emulsions prepared in the same way with a surfactant that does not form liquid crystals. While the formation of a stable intermediate multiple emulsion may not be a necessary condition for the inversion to occur, the transitional presence of a liquid crystal proved to be a significant factor in the stabilization of the intermediate multiple emulsions. The resulting gel emulsion contained a small fraction of the liquid crystal according to the phase diagram, and it exhibited excellent stability.  相似文献   

16.
Urea is found to show the hydrotrope action when the aqueous solubility of surfactant CTAB is enhanced while it will show the hydrotrope-solubilization action when the solubilized amount of n-C5H11OH in O/W microemulsion and that of water in W/O microemulsion are increased. The mechanism of the hydrotrope-sotubilization action of urea is in fact the increase of the stability of W/O and O/W microemulsion and structural transition from the lamellar liquid crystal phase to the bicontinuous structure.  相似文献   

17.
Products such as cosmetics, pharmaceuticals, and crude oil often exist as water-in-oil (W/O) emulsions during their processing or in final form. In many cases, their dispersed aqueous phase is encased in a crystal network and/or by interfacially-adsorbed (‘Pickering’) particles [paraffins, triacylglycerols, polymers, etc.] that promote emulsion kinetic stability by hindering droplet–droplet contact, coalescence and macroscopic phase separation. In processed foods, important questions remain regarding whether a continuous phase fat crystal network or Pickering crystal provides better stabilization. This review explores the following factors related to crystal-stabilized W/O emulsions: i) the key properties dictating fat crystal spatial distribution (at the interface or in the continuous phase); ii) how temperature and freeze–thaw emulsion destabilization are intimately linked with fat crystal spatial distribution, and; iii) why oil-soluble surfactant interactions with the continuous oil phase influence fat crystal wettability and emulsifier efficacy. It is shown that these parameters strongly govern W/O emulsion formation and stability.  相似文献   

18.
Aqueous high internal phase volume ratio (O/W 90/10) Janus emulsions of a vegetable oil and a silicone fluid were prepared in a single step emulsification by the common vibrator equipment. The basis for the unique structure is discussed in relation to pair-wise interactions between the components with especial emphasis on the surfactant concentration in the aqueous phase.  相似文献   

19.
An attempt was made to provide a basic composition and simple technique for preparing the W/O/W emulsions in an edible form in a view to possible food applications of this type of emulsions. It has been found that TGCR (tetraglyceryl condensed ricinoleate), which is one of the hydrophobic food surfactants, plays a relevant role in developing water/olive oil/water emulsions due to the phase inversion phenomenon occuring when an aqueous solution of glucose or sodium chloride or acetic acid is being introduced successively into the mixture of TGCR and olive oil. The existence of a small amount of sodium chloride (around 10 mM) in the aqueous phase facilitated the development of a water/olive oil/water-type dispersion. The durability of oil layer on the surface of the aqueous compartments in the W/O/W emulsions prepared was much improved by addition of sodium chloride to the aqueous phase.  相似文献   

20.
Water-in-oil-in-water (W/O/W) double emulsions are a promising technology for encapsulation applications of water soluble compounds with respect to functional food systems. Yet molecular transport through the oil phase is a well-known problem for liquid oil-based double emulsions. The influence of network crystallization in the oil phase of W/O/W globules was evaluated by NMR and laser light scattering experiments on both a liquid oil-based double emulsion and a solid fat-based double emulsion. Water transport was assessed by low-resolution NMR diffusometry and by an osmotically induced swelling or shrinking experiment, whereas manganese ion permeation was followed by means of T2-relaxometry. The solid fat-based W/O/W globules contained a crystal network with about 80% solid fat. This W/O/W emulsion showed a reduced molecular water exchange and a slower manganese ion influx in the considered time frame, whereas its globule size remained stable under the applied osmotic gradients. The reduced permeability of the oil phase is assumed to be caused by the increased tortuosity of the diffusive path imposed by the crystal network. This solid network also provided mechanical strength to the W/O/W globules to counteract the applied osmotic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号