首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here a study using a quadrupole mass spectrometer (QMS) in which a static magnetic field is applied transversely to the body of the mass filter operating in stability zone 3. Significant improvement in QMS performance was obtained under certain magnetic field conditions, and these have been explained in terms of our theoretical model. The theoretical approach assumed in the model is that the QMS contains hyperbolic rods as electrodes and that the magnetic field acts over the full length of the mass filter assembly. Our latest analysis also predicts for what values of operating parameters an enhancement of the quadrupole resolution is achieved when a transverse magnetic field is applied. The model predicts instrument resolution R > 5000 for Ar with a 100 mm long mass filter and R > 3500 for a HT and D2 mixture with a 200 mm long mass filter via application of a transverse magnetic field.  相似文献   

2.
This work demonstrates resolution enhancement of a quadrupole mass filter (QMF) under the influence of a static magnetic field. Generally, QMF resolution can be improved by increasing the number of rf cycles an ion experiences when passing through the mass filter. In order to improve the resolution, the dimensions of the QMF or the operating parameters need to be changed. However, geometric modifications to improve performance increase the manufacturing cost and usually the size of the instrument. By applying a magnetic field, a low‐cost, small footprint instrument with reduced power requirements can be realized. Significant improvement in QMF resolution was observed experimentally for certain magnetic field conditions, and these have been explained in terms of our theoretical model developed at the University of Liverpool. This model is capable of accurate simulation of spectra allowing the user to specify different values of mass spectrometer dimensions and applied input signals. The model predicts enhanced instrument resolution R>26 000 for a CO2 and N2 mixture with a 200‐mm long mass filter operating in stability zone 3 via application of an axial magnetic field. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The individual mass spectral peaks produced by a quadrupole mass spectrometer (QMS) are asymmetric; they exhibit a 'tail' on the low mass side. In some cases a definite structure is observed in the tail. We show that the tail structure is a consequence of the use of circular electrodes. An extreme case of an experimentally observed QMS mass peak with a distinct tail structure is shown and the general form is reproduced using our numerical model. The effect of instrument resolution, length, operating frequency, ion energy, mass and ion source aperture upon the tail structure are considered. Results show that extensive long tails originate mainly from ions that enter the mass filter at a relatively large distance from the QMS axis; also no significant tail is produced in the case of ideal hyperbolic form electrodes of finite length.  相似文献   

4.
Previous experimental and theoretical work identified that the application of a static magnetic (B) field can improve the resolution of a quadrupole mass spectrometer (QMS) and this simple method of performance enhancement offers advantages for field deployment. Presented here are further data showing the effect of the transverse magnetic field upon the QMS performance. For the first time, the asymmetry in QMS operation with B x and B y is considered and explained in terms of operation in the fourth quadrant of the stability diagram. The results may be explained by considering the additional Lorentz force (v x B) experienced by the ion trajectories in each case. Using our numerical approach, we model not only the individual ion trajectories for a transverse B field applied in x and y but also the mass spectra and the effect of the magnetic field upon the stability diagram. Our theoretical findings, confirmed by experiment, show an improvement in resolution and ion transmission by application of magnetic field for certain operating conditions.
Figure
?  相似文献   

5.
The qualitative and quantitative identification of low mass isotopes in the mass range 1–6 u poses certain difficulties when attempting to achieve the required resolution with an instrument suitable for deployment within a process environment. Certain adjacent species present in the process sample (HT and D2) require a resolution greater than 930 to achieve an accurate measurement. We demonstrate here through simulation techniques that this level of performance required is unachievable using commercially available instruments. Using previously reported simulation techniques, this article demonstrates how the required performance for resolving the low mass isotopes can be achieved by a quadrupole mass spectrometer (QMS), which incorporates a quadrupole mass filter (QMF) constructed from hyperbolic electrodes and operated in zone 3 of the Mathieu stability diagram.  相似文献   

6.
An ion mobility cell of a novel type was coupled to an orthogonal injection time-of-flight (TOF) mass spectrometer. The mobility cell operates at low-pressure and contains a segmented RF ion guide providing an axial electric field that drives the ions towards the exit. A flow of gas is arranged inside the ion guide in such a way that the gas drag counteracts the force exerted by the axial field. Ions with different mobility coefficients can be scanned out of the ion guide by ramping the axial field strength. The ions can be analyzed intact or fragmented in a collision cell before introduction into an orthogonal TOF mass spectrometer. An ion source with matrix assisted laser desorption/ionization (MALDI) was attached to the instrument. The setup was evaluated for the analysis of peptide and protein mixture, with sequential fragmentation of multiple precursor ions from a protein digest and with mobility separation of fragment ions formed by in-source fragmentation of pure peptides. The mobility resolution for peptides was observed to be three times higher than the theoretical resolution predicted for a classical mobility setup with similar operating conditions (pressure, field strength, and length).  相似文献   

7.
The performance of commercial quadrupole mass spectrometers (QMS) with a number of imperfections, as compared to the ideal hyperbolic geometry, has been characterized using the computer simulation program version 6.0. The analysis of simulated QMS geometries focuses primarily on modeling of the internal potential, the study of field deviations, and the influence of finite length on performance of the QMS. The computer simulation of ion trajectories in the QMS field yields predictions for optimum working conditions and provides estimates for the resolving power and the maximum isotopic abundance sensitivity. Experimental measurements that confirm these expectations are presented. Optimization of the geometry and various operational parameters of the QMS is an important step in the development of a system for highly selective ultratrace determination using laser-based resonance ionization mass spectrometry.  相似文献   

8.

Rationale

Recent trends towards miniature and portable quadrupole mass spectrometry (QMS) entail challenges in instrumental sensitivity, which is influenced by 3D fringe field effects on ion transmission in the Quadrupole Mass Filter (QMF). The relationship of these effects with the gap from the ion source to the QMF entrance (source gap) is significant and little explored. We examine transmission characteristics experimentally and use the results to test the predictive accuracy of a recently developed 3D QMF simulation model. The model is then applied to directly investigate optimal transmission m/z ranges across multiple source gaps.

Methods

A portable single filter quadrupole mass spectrometer is used to analyse transmission characteristics across a range of common gases. We use an experimental approach originally proposed by Ehlert, enhanced with a novel method for absolute calibration of the transmission curve. Custom QMF simulation software employs the boundary element method (BEM) to compute accurate 3D electric fields. This is used to study the effects of the source gap on transmission efficiency.

Results

Experimental findings confirm a centrally peaked transmission curve; simulations correctly predict the optimal transmission location (in m/z) and percentage, and extend the experimental trend. We compare several methods for determining fringe field length, demonstrating how the size of the physical source gap influences both the length and the intensity of the fringe field at the QMF entrance. A complex relationship with ion transmission is revealed in which different source gaps promote optimal transmission at differing m/z ranges.

Conclusions

The presented results map the relationship between the source gap and transmission efficiency for the given instrument, using a simulation method transferrable to other setups. This is of importance to miniature and portable quadrupole mass spectrometers design for specific applications, for the first time enabling the source gap to be tailored for optimal transmission in the desired mass range.
  相似文献   

9.
We propose a novel ion cyclotron resonance ion trap capable of confining ions even at high pressure. The trap consists of three capacitively coupled axial sections, each composed of four circular cross-section rods parallel to the magnetic field axis. Ion confinement along the magnetic field direction is provided by applying the same static voltage to each set of “endcap” rods. As for a two-dimensional quadrupole mass filter, a sufficiently high rf frequency (several MHz) leads to an “effective” electrostatic “pseudopotential” well with a minimum on the trap central axis. Ions are confined radially by the combination of an applied axial static magnetic field and a radially inward-directed electric field resulting from differential rf voltages applied to each set of four rods. Ion confinement properties are revealed from a Paul traplike “stability diagram,” whereas ion trajectories are analyzed in terms of Penning-type ion cyclotron rotation, magnetron rotation, and axial oscillation motional modes. Ion cyclotron frequency increases with the strength of the rf trapping field. Ion magnetron motion becomes stable if the rf voltage is high enough. Therefore, ion trajectories can be stable even in the presence of ion-neutral collisions. Adding an ac potential to a Penning trap should dramatically increase the upper mass detection limit.  相似文献   

10.
高精度四极质谱仪(QMS)的气体分压精确测量功能与其使用方法关系密切.采用包含有四极质谱仪、真空系统和进样系统的质谱参数测试装置,针对工作及系统参数对质谱测试结果的影响开展研究.试验结果表明:无论是扫描速率、质量数分辨率、电压和探测器等质谱工作参数,还是真空本底、工作真空和气体种类等系统参数都会对质谱测试结果尤其检测限产生一定影响.试验获得了特定条件下的最优参数并进行比较.采用获得的最优参数组合,通过测量空气中极低含量稀有氪气和氙气的同位素谱图,可获得一定条件下法拉第杯(FC)、二次电子倍增器(SEM)和离子计数器(CP)等3种探测器的最小可检浓度,分别为17.3×10-9、0.34×10-9和0.15×10-9.其中SEM和CP的检测限最低,适合用于微量气体分析.  相似文献   

11.
A mathematical model of time-of-flight mass analyzers employing uniform electric fields is presented that allows “exact” calculations of flight times as functions of mass-to-charge ratio, initial velocity and position, applied voltages, and instrument geometry. An “approximate” equation based on a series expansion of the “exact” result is derived which allows focusing conditions and limits on resolution to be determined for different instrument geometries and operating conditions. The fundamental theory is applied to predicting resolution and mass accuracy in matrix-assisted laser desorption ionization-time of flight. In this case higher order velocity focusing can provide excellent correction for the initial velocity distribution of a selected mass-to-charge ratio, but the focusing is mass-to-charge ratio dependent. There is generally a trade-off between ultimate resolution at a particular mass-to-charge ratio and resolution and mass accuracy over a broad mass range. In most practical applications the latter is more important. Calculations are compared with experimental results for a particular analyzer geometry, both at theoretical optimum velocity focus and at operating conditions where ultimate resolution is sacrificed for a broader range of relatively high resolution and better mass accuracy.  相似文献   

12.
A new linked scan is described by which fragmentations occurring in the second field free region of a two sector instrument can be monitored. The scan can be used only if the first stage allows selection of ions according to their masses. The magnetic sector and electric sector are scanned in unison so that the product B2E is maintained constant. A spectrum of all parents of a preselected daughter ion is obtained and the resolution depends only on the mass resolution of the magnetic sector.  相似文献   

13.
The orbital trap mass analyzer provides a number of unique analytical features along with inevitable limitations as an electrostatic instrument operating in high space charge regimes resulting in systematic measured frequency errors as an effect of stored ion clouds on the trap field and each other effect of non-ideal machining the trap electrodes, effect of injection slot, effect of real versus theoretical trap dimensions, etc. This paper deals with determining the influence of the space charge effect and imperfection of the electrostatic field on the motion of ion ensembles in the orbital trap. We examine effects of theoretically modeled non-harmonicity of the electrostatic potential and the number of confined ions on stability of coherent ion motion in the trap that determines the frequency shifts of axial ion oscillation. Three different Orbitrap geometries were considered: geometry close to preproduction Orbitrap, close to standard Orbitrap, close to high field Orbitrap. Frequency shifts for m/z = 500 and for charge state +23 of cytochrome c isotopic cluster particles with 104 {10^4} -6*106 {10^6} elemental charges in the trap were considered. Refined spectra were calculated using the filter diagonalization method proposed by Mandelshtam et al. and applied to mass spectrometry by O’Connor and Aizikov.  相似文献   

14.
In this report, we present a prototype design of a quadrupole mass filter (QMF) with hyperbolic electrodes, fabricated at the University of Liverpool using digital light processing (DLP), a low-cost and lightweight 3D rapid prototyping (RP) technique. Experimental mass spectra are shown for H2+, D2+, and He+ ions to provide proof of principle that the DLP mass filter is working as a mass analyzer in the low-mass range (1 to 10 amu). The performance of the DLP QMF has also been investigated for individual spectral peaks. Numerical simulations of the instrument were performed by coupling CPO and Liverpool QMS-2 programs to model both the ion source and mass filter, respectively, and the instrument is shown to perform as predicted by theory. DLP thus allows miniaturization of mass spectrometers at low cost, using hyperbolic (or other) geometries of mass analyzer electrodes that provide optimal ion manipulation and resolution for a given application. The potential of using RP fabrication techniques for developing miniature and microscale mass analyzers is also discussed.  相似文献   

15.
In the normal operation of quadrupole ion trap mass spectrometers, approximately half of the trapped ions are ejected through the source endcap during a mass-selective instability scan. This reduces the sensitivity of the instrument by approximately 50%. In this preliminary study, a circuit was constructed that produced a dipolar DC offset on the axial modulation waveform to recover this lost ion current. A variable (0 to 10 V DC), positive and negative offset was applied to the source and detector endcap, respectively. This DC offset axially displaced the ion cloud toward the detector endcap increasing the probability of detection. Several compounds, including 11 pesticides, were evaluated. Sensitivity enhancements ranged from 13 to 97% (theoretical 100%). No spectral resolution problems were observed; however, a compound-dependent mass discrimination was observed in several cases. This mass discrimination problem is currently under investigation.  相似文献   

16.
The determination of body fluid acidity using a wireless magnetoelastic pH-sensitive sensor is described. The sensor was fabricated by casting a layer of pH-sensitive polymer on a magnetoelastic ribbon. In response to an externally applied time-varying magnetic field, the magnetoelastic sensor mechanically vibrates at a characteristic frequency that is inversely dependent upon the mass of the pH polymer film, which varies as the film swells and shrinks in response to pH. As the magnetoelastic sensor is magnetostrictive, the mechanical vibrations of the sensor launch magnetic flux that can be detected remotely using a pickup coil. The sensor can be used for direct measurements of body fluid acidity without a pretreatment of the sample by using a filtration membrane. A reversible and linear response was obtained between pH 5.0 and 8.0 with a measurement resolution of pH 0.1 and a slope of 0.2 kHz pH(-1). Since there are no physical connections between the sensor and the instrument, the sensor can be applied to in vivo and in situ monitoring of the physiological pH and its fluctuations.  相似文献   

17.
18.
Fourier transform ion cyclotron resonance (FTICR) mass spectrometers function such that the ion accumulation event takes place in a region of higher pressure outside the magnetic field which allows ions to be thermally cooled before being accelerated toward the ICR cell where they are decelerated and re-trapped. This transfer process suffers from mass discrimination due to time-of-flight effects. Also, trapping ions with substantial axial kinetic energy can decrease the performance of the FTICR instrument compared with the analysis of thermally cooled ions located at the trap center. Therefore, it is desirable to limit the energy imparted to the ions which results in lower applied trap plate potentials and reduces the spread in axial kinetic energy. The approach presented here for ion transfer, called restrained ion population transfer or RIPT, is designed to provide complete axial and radial containment of an ion population throughout the entire transfer process from the accumulation region to the ICR cell, eliminating mass discrimination associated with time-of-flight separation. This was accomplished by use of a number of quadrupole segments arranged in series with independent control of the direct current (DC) bias voltage applied to each segment of the quadrupole ion guide. The DC bias voltage is applied in such a way as to minimize the energy imparted to the ions allowing transfer of ions with low kinetic energy from the ion accumulation region to the ICR cell. Initial FTICR mass spectral data are presented that illustrate the feasibility of RIPT. A larger m/z range for a mixture of peptides is demonstrated compared with gated trapping. The increase in ion transfer time (3 ms to 130 ms) resulted in an approximately 11% decrease in the duty cycle; however this can be improved by simultaneously transferring multiple ion populations with RIPT. The technique was also modeled with SIMION 7.0 and simulation results that support our feasibility studies of the ion transfer process are presented.  相似文献   

19.
A computer model has been developed that is able to predict the performance of a quadrupole mass spectrometer (QMS) for any constant cross section electrode geometry. It has been used to predict the performance of QMS systems with both hyperbolic and circular cross section electrodes. The predictions confirm the limited previous work that indicates QMS performance is poorer when circular cross section electrodes are used rather than hyperbolic ones. There is also an indication that use of circular electrodes causes a movement of the peak position from the expected one and produces an extended tail on the low mass side of the peak. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

20.
In a comparative analysis of young and finished product wines by semi-quantitative ICP-MS, a striking difference was observed: finished products exhibited significant concentrations of the rare earth elements whereas the concentrations in young wines which had not been subdued to any treatment after their initial preparation from the grapes were below the determination limits with a quadrupole instrument and could only be determined with a magnetic field instrument operated at a low mass resolution (R = 300). The reason was found in contamination from bentonites as usually applied for the purification of wines from tarnishing components such as proteins. Therefore, bentonites of different origin were extracted with a reference wine, and an increase of the rare earth element concentrations by more than one order of magnitude was observed in the extracts. The investigation leads to the conclusion that the concentration pattern of the rare earth elements can be strongly affected by the wine producing process and therefore is not generally suitable as a fingerprint for the provenance of wines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号