首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of a methylamine sorption complex of fully dehydrated fully Ca2+-exchanged zeolite X, |Ca46(CH3NH2)16|[Si100Al92O384]-FAU, has been determined in the cubic space group Fd3 at 21(1) degrees C (a = 24.994(4) angstroms) by single-crystal X-ray diffraction techniques. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous Ca(NO3)2 for 3 days, followed by dehydration at 480 degrees C and 2 x 10(-6) Torr for 2 days, and exposure to 160 Torr of zeolitically dry methylamine gas at 21(1) degrees C. The structure was determined in this atmosphere and was refined, using the 739 reflections for which I > 0, to the final error indices R1 = 0.152 and R2 = 0.061. In this structure, Ca2+ ions occupy three crystallographic sites. Sixteen Ca2+ ions fill the octahedral site at the centers of hexagonal prisms (Ca-O = 2.429(7) angstroms). The remaining 30 Ca2+ ions are found at two nonequivalent sites II (in the supercages) with occupancies of 14 and 16 ions. Each of these Ca2+ ions coordinates to three framework oxygens, either at 2.296(7) or 2.334(7) angstroms, respectively. Sixteen methylamine molecules have been sorbed per unit cell, two per supercage. Each coordinates to one of the latter 16 site-II Ca2+ ions: N-Ca = 2.30(9) angstroms. The imprecisely determined N-C bond length, 1.48(23) angstroms, differs insignificantly from that in methylamine(g), 1.474(5) angstroms. The positions of the hydrogen atoms were calculated. One of the amino hydrogen atoms hydrogen bonds to a 6-ring oxygen, and the other forms a bifurcated hydrogen bond to two other 6-ring oxygens. The methyl group does not hydrogen bond to anything.  相似文献   

2.
A selected ion flow tube (SIFT) experimental investigation has been carried out of the reactions of H3O+, NO+ and O2+ with NO, NO2, N2O and HNO2, in order to obtain the essential kinetic data for the analyses of these compounds in air using selected ion flow tube mass spectrometry (SIFT-MS). These investigations show that NO+ ions do not react at a significant rate with any of these NOx compounds and that H3O+ ions react only with HNO2 (product ions H2NO2+ (75%) and NO+ (25%)). O2+ ions react with NO (product ion NO+), NO2 (product ion NO2+) and HNO2 (product ions NO+ (75%), NO2+ (25%)), but not with N2O. We conclude that both NO and NO2 can be accurately quantified in air using only O2+ precursor ions and SIFT-MS when HNO2 is not present. However, when HNO2 is present it invariably co-exists with both NO and NO2 and then both H3O+ and O2+ precursor ions are needed to determine the partial pressures of NO, NO2 and HNO2 in the air mixture. We also conclude that currently N2O cannot be analysed in air using SIFT-MS.  相似文献   

3.
The crystal structure of an ethylene sorption complex of fully vacuum-dehydrated fully Ag(+)-exchanged zeolite X (FAU), a = 24.865(2) A, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 21 degrees C. It is very different from the ethylene complex of Ag(92)-X that had been dehydrated at 400 degrees C in flowing oxygen, as were the two dehydrated structures. The crystal was prepared by ion exchange in a flowing stream of aqueous 0.05 M AgNO(3) for 3 days, followed by dehydration at 400 degrees C and 2 x 10(-6) Torr for 2 days, followed by exposure to 300 Torr of zeolitically dry ethylene gas for 2 h at 21 degrees C. The structure was determined in this atmosphere and was refined using all data to the final error indices (based upon the 534 reflections for which F(o) > 4sigma(F(o))) R(1) = 0.062 and wR(2) = 0.135. In this structure, per unit cell, 14 Ag(+) ions were found at the octahedral site I (Ag-O = 2.611(9) A), and 32 partially reduced Ag(+) ions fill two different site I' positions deep in the sodalite cavities (Ag-O = 2.601(13) and 2.618(12) A). The sodalite cavities host two different cationic silver clusters. In about 47% of sodalite units, eight silver atoms form interpenetrating tetrahedra, Ag(8)(n+) (n = 4 is suggested), with T(d)() symmetry. The other 53% of the sodalite units host cyclo-Ag(4)(m+) (m = 2 is suggested) cations with near S(4) symmetry. These clusters are very similar to those in vacuum-dehydrated Ag(92)-X. Thirty-two Ag(+) ions fill the single 6-rings, 15 at site II' (Ag-O = 2.492(10) A), and 17 at site II (Ag-O = 2.460(9) A). The latter 17 lie in supercages where each forms a lateral pi-complex with an ethylene molecule. In turn, each C(2)H(4) molecule forms two cis electrostatic hydrogen bonds to framework oxygens. The remaining 14 Ag+ ions occupy three different II' sites. Vacuum dehydration had caused substantial decomposition: per unit cell, 30 of the 92 Ag(+) ions were reduced and 15 of the 384 framework oxide ions were oxidized to O2(g), leaving lattice vacancies. The sorption of C(2)H(4) at 21 degrees C reoxidized about 7 of the 30 Ag(0) atoms to Ag(+) and reduced 1.75 ethylene molecules to give CH(2)(2-) groups which refilled 3.5 of these 15 lattice vacancies. The remaining vacancies may have been filled with H(2)C=C(2-) ions. The unit cell formula, which originally contained 384 oxygen atoms, may be |Ag(92)(C2H4)17|[Si(100)Al(92)O(369)(CH2)3.5] or |Ag(92)H(23)(C2H4)17|[Si(100)Al(92)O(369)(CH2)3.5(C2H2)11.5].  相似文献   

4.
The crystal structure and thermal stability of two cadmium sulfide nanoclusters prepared in zeolite A (LTA) have been studied by XPS, TGA, and single-crystal and powder XRD. The crystal structures of Cd2.4Na3.2(Cd6S4)0.4(Cd2Na2S)0.6(H2O)> or =5.8[Si12Al12O48]-LTA (a = 12.2919(7) A, crystal 1 (hydrated)) and /Cd4Na2(Cd2O)(Na2O)/[Si12Al12O48]-LTA (a = 12.2617(4) A, crystal 2 (dehydrated)) were determined by single-crystal methods in the cubic space group Pm3m at 294(1) K. Crystal 1 was prepared by ion exchange of Na12-LTA in an aqueous stream 0.05 M in Cd2+, followed by washing in a stream of water, followed by reaction in an aqueous stream 0.05 M in Na2S. Crystal 2 was made by dehydrating crystal 1 at 623 K and 1 x 10(-6) Torr for 3 days. In crystal 1, Cd6S4(4+) nanoclusters were found in and extending out of about 40% of the sodalite cavities. Central to each Cd6S4(4+) cluster is a Cd4S4 unit (interpenetrating Cd2+ and S2- tetrahedra with near Td symmetry, Cd-S = 2.997(24) A, Cd-S-Cd = 113.8(12) degrees, and S-Cd-S = 58.1(24) degrees). Each of the two remaining Cd2+ ions bonds radially through a 6-ring of the zeolite framework to a sulfide ion of this Cd4S4 unit (Cd-S = 2.90(8) A). In each of the remaining 60% of the sodalite cavities of crystal 1, a planar Cd2Na2S4+ cluster was found (Cd-S/Na-S = 2.35(5)/2.56(14) A and Cd-S-Cd/Na-S-Na = 122(5)/92(7) degrees). Cd6S4(4+) and Cd2Na2S4+ are stable within the zeolite up to about 700 K in air. Upon vacuum dehydration at 623 K, all sulfur was lost (crystal 2). Instead as anions, only two oxide ions remain per sodalite unit. One bridges between two Cd2+ ions (Cd2O2+, Cd-O = 2.28(3) A) and the other between two Na+ ions (Na2O, Na-O = 2.21(10) A).  相似文献   

5.
The synthesis of ClC(O)OONO(2) is accomplished by photolysis of a mixture of Cl(2), NO(2), and CO in large excess of O(2) at about -70 degrees C. The product is isolated after repeated trap-to-trap condensation. The solid compound melts at -84 degrees C, and the extrapolated boiling point is 80 degrees C. ClC(O)OONO(2) is characterized by IR, Raman, (13)C NMR, and UV spectroscopy. According to the IR matrix spectra, the compound exists at room temperature only as a single conformer. The molecular structure of ClC(O)OONO(2) is determined by gas electron diffraction. The molecule possesses a gauche structure with a dihedral angle of phi(COON) = 86.7(19) degrees , and the C=O bond is oriented syn with respect to the O-O bond. The short O-O bond (1.418(6) A) and the long N-O bond (1.511(8) A) are consistent with the facile dissociation of ClC(O)OONO(2) into the radicals ClC(O)OO and NO(2). The experimental geometry of ClC(O)OONO(2) is reproduced reasonably well by B3LYP/6-311+G(2df) calculations, whereas the MP2 approximation predicts the N-O bond considerably too long and the dihedral angle too small.  相似文献   

6.
State-selective mass spectrometry has revealed one conclusive and another probable metastable state of the N2O2+ dication, assigned respectively as 1 3Pi at 38.5 eV and 2 3Pi at 42.5 eV. Photon coincidence experiments confirm that dissociation of 1 3Pi is preceded by a fluorescent transition to X 3Sigma- and also indicate that an identical mechanism occurs for 2 3Pi. Highly correlated MRCI calculations are performed at a range of N2O2+ geometries, from which both N-N and N-O bond stretching curves are generated. Substantial barriers along both coordinates are observed for 1 3Pi and 2 3Pi, although the increasing density of states at higher energy may allow spin-orbit or vibronic predissociation for 2 3Pi. Fragment emissions derived from N2O+ and N2O2+ are analyzed with the aid of glass filters, from which NO (X 2Pi<--A 2Sigma+) and vibrationally excited N2+ (X 2Sigmag+<--B 2Sigmau+) transitions are deduced.  相似文献   

7.
Reaction of Fe(CO)2(NO)2 and [(ON)Fe(S,S-C6H3R)2]- (R = H (1), CH3 (1-Me))/[(ON)Fe(SO2,S-C6H4)(S,S-C6H4)]- (4) in THF afforded the diiron thiolate/sulfinate nitrosyl complexes [(ON)Fe(S,S-C6H3R)2 Fe(NO)2]- (R = H (2), CH3 (2-Me)) and [(ON)Fe(S,SO2-C6H4)(S,S-C6H4)Fe(NO)2]- (3), respectively. The average N-O bond lengths ([Fe(NO)2] unit) of 1.167(3) and 1.162(4) A in complexes 2 and 3 are consistent with the average N-O bond length of 1.165 A observed in the other structurally characterized dinitrosyl iron complexes with an {Fe(NO)2}9 core. The lower nu(15NO) value (1682 cm(-1) (KBr)) of the [(15NO)FeS4] fragment of [(15NO)Fe(S,S-C6H3CH3)2 Fe(NO)2]- (2-Me-15N), compared to that of [(15NO)Fe(S,S-C6H3CH3)2]- (1-Me-15N) (1727 cm(-1) (KBr)), implicates the electron transfer from {Fe(NO)2}10 Fe(CO)2(NO)2 to complex 1-Me/1 may occur in the process of formation of complex 2-Me/2. Then, the electronic structures of the [(NO)FeS4] and [S2Fe(NO)2] cores of complexes 2, 2-Me, and 3 were best assigned according to the Feltham-Enemark notation as the {Fe(NO)}7-{Fe(NO)2}9 coupling (antiferromagnetic interaction with a J value of -182 cm(-1) for complex 2) to account for the absence of paramagnetism (SQUID) and the EPR signal. On the basis of Fe-N(O) and N-O bond distances, the dinitrosyliron {L2Fe(NO)2} derivatives having an Fe-N(O) distance of approximately 1.670 A and a N-O distance of approximately 1.165 A are best assigned as {Fe(NO)2}9 electronic structures, whereas the Fe-N(O) distance of approximately 1.650 A and N-O distance of approximately 1.190 A probably imply an {Fe(NO)2}10 electronic structure.  相似文献   

8.
The common explosives, RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), HMX (1,3,5,7- tetranitro-1,3,5,7-tetraazacyclooctane) and TNT (trinitrotoluene), were considered adequately for all weapons applications. Due to many catastrophic explosions resulting from unintentional initia-tion of impact, friction or shock, these explosives have become less attractive. TATB (1,3,5-tria- mino-2,4,6-trinitrobenzene) is noted for its insensitivity, however, it does not have the energetic performance of e…  相似文献   

9.
We have synthesized a new type of acyclic bis(N2O2 chelate) ligand that affords a C-shaped O6 site by the metalation of the N2O2 salamo sites. UV-vis titration clearly showed that complexation of H4L with MII (MnII, CoII, and NiII) affords the 1:3 complex [LM3]2+ in a cooperative fashion, whereas complexation with copper(II) gave two or more complexes in a stepwise fashion. The manganese(II) complex [LMn3(OAc)2(MeOH)2] crystallizes in the triclinic system, space group P_1, with unit cell parameters a = 9.584(6) A, b = 13.666(9) A, c = 15.566(10) A, alpha = 108.702(8) degrees, beta = 95.255(4) degrees, gamma = 101.023(8) degrees, and Z = 2, and the cobalt(II) complex [LCo3(OAc)2(EtOH)2].2CHCl3 crystallizes in the triclinic system, space group P_1, with unit cell parameters a = 13.291(6) A, b = 13.913(7) A, c = 14.599(8) A, alpha = 88.27(2) degrees, beta = 67.391(15)degrees, gamma = 73.90(2) degrees, and Z = 2. In the crystal structures, three metal ions occupied both the N2O2 and O6 sites of the ligand L4-. The resultant trinuclear complexes have a C- or S-shaped structure depending on the metal employed. The different nature of the N2O2 and O6 sites of the ligand H4L leads to the site-selective introduction of two different d-block transition metals. An X-ray crystallographic analysis revealed the structures of the two heterotrinuclear complexes, [LZn2Mn(OAc)2(MeOH)2] and [LCu2Zn(OAc)2(H2O)].  相似文献   

10.
Ab initio computational methods were used to obtain Delta(r)H(o), Delta(r)G(o), and Delta(r)S(o) for the reactions 2 NO <=> N(2)O(2) (I), NO+NO(2) <=> N(2)O(3) (II), 2 NO(2) <=> N(2)O(4) (III), NO(2)+NO(3) <=> N(2)O(5) (IV), and 2 N(2)O <=> N(4)O(2) (V) at 298.15 K. Optimized geometries and frequencies were obtained at the CCSD(T) level for all molecules except for NO, NO(2), and NO(3), for which UCCSD(T) was used. In all cases the aug-cc-pVDZ (avdz) basis set was employed. The electronic energies of all species were obtained from complete basis set extrapolations (to aug-cc-pV5Z) using five different extrapolation methods. The [U]CCSD(T)/avdz geometries and frequencies of the N(x)O(y) compounds are compared with literature values, and problems associated with the values and assignments of low-frequency modes are discussed. The standard entropies are compared with values cited in the NIST/JANAF tables [NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data Monograph No. 9, 4th ed. edited by M. W. Chase, Jr. (American Chemical Society and American Institute of Physics, Woodbury, NY, 1988)]. With the exception of I, in which the dimer is weakly bound, and V, for which thermodynamic data appears to be lacking, the calculated standard thermodynamic functions of reaction are in good agreement with literature values obtained both from statistical mechanical and various equilibrium methods. A multireference-configuration interaction calculation (MRCI+Q) for I provides a D(e) value that is consistent with previous calculations. The combined uncertainties of the NIST/JANAF values for Delta(r)H(o), Delta(r)G(o), and Delta(r)S(o) of II, III, and IV are discussed. The potential surface for the dissociation of N(2)O(4) was explored using multireference methods. No evidence of a barrier to dissociation was found.  相似文献   

11.
The dissociation and association dynamics of N2O4 [see text] 2NO2 in liquid state are studied by classical molecular dynamics simulations of reactive liquid NO2. An OSPP+LJ potential between NO2 molecules, which is a sum of an orientation-sensitive pairwise potential (OSPP) between N-N atoms proposed in Paper I [J. Chem. Phys. 115, 10852 (2001)] and Lennard-Jones potentials between N-O and O-O atoms, has been used in the simulation. The reaction dynamics is studied as a function of well depth De and anisotropy factors of the OSPP potential: Atheta (0< or =Atheta< or =1) for the rocking angle and Atau (0< or =Atau< or =0.5) for the torsional angle of relative NO2-NO2 orientation. The lifetime tauD of initially prepared NO2 dimers is found to increase as De increases, Atheta increases, and Atau decreases. Dissociation and association dynamics are studied in detail around the extreme limit of pure NO2-dimer liquid: De=0.12 x 10(-18) J, Atheta=0.5, and Atau=0.1, which has been found to reproduce both the observed liquid phase equilibrium properties and Raman band shapes of the dissociation mode very well. The dissociation dynamics from microscopic reaction trajectories is compared with the potential of the mean force (PMF) as a function of the N-N distance R. The PMF of reactive liquid NO2 shows a transition state barrier at R=2.3-2.5 A, and NO2-trimer structure is found to be formed at the barrier. Two types of dissociation of the NO2 dimer-the dissociation by collisional activation of the reactive mode to cross the dissociation limit and the NO2-mediated dissociation via bond transfer-are studied. The latter needs less free energy and is found to be much more probable. The dissociation trajectories and PMF in reactive liquid NO2 are compared with those of a reactive NO2 pair in inert solvent N2O4.  相似文献   

12.
Laser-induced fluorescence spectroscopy via excitation of the A2pi(3/2) <-- X2pi(3/2) (2,0) band at 445 nm was used to monitor IO in the presence of NO2 following its generation in the reactions O(3P) + CF3I and O(3P) + I2. Both photolysis of O3 (248 nm) and NO2 (351 nm) were used to initiate the production of IO. The rate coefficients for the thermolecular reaction IO + NO2 + M --> IONO2 + M were measured in air, N2, and O2 over the range P = 18-760 Torr, covering typical tropospheric conditions, and were found to be in the falloff region. No dependence of k1 upon bath gas identity was observed, and in general, the results are in good agreement with recent determinations. Using a Troe broadening factor of F(B) = 0.4, the falloff parameters k0(1) = (9.5 +/- 1.6) x 10(-31) cm6 molecule(-2) s(-1) and k(infinity)(1) = (1.7 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) were determined at 294 K. The temporal profile of IO at elevated temperatures was used to investigate the thermal stability of the product, IONO2, but no evidence was observed for the regeneration of IO, consistent with recent calculations for the IO-NO2 bond strength being approximately 100 kJ mol(-1). Previous modeling studies of iodine chemistry in the marine boundary layer that utilize values of k1 measured in N2 are hence validated by these results conducted in air. The rate coefficient for the reaction O(3P) + NO2 --> O2 + NO at 294 K and in 100 Torr of air was determined to be k2 = (9.3 +/- 0.9) x 10(-12) cm3 molecule(-1) s(-1), in good agreement with recommended values. All uncertainties are quoted at the 95% confidence limit.  相似文献   

13.
The radical-molecule reaction mechanism of CHCl(2) and CCl(3) with NO(2) have been explored theoretically at the B3LYP/6-311G(d,p) and MC-QCISD (single-point) levels. For the singlet potential energy surface (PES) of CHCl(2) + NO(2) reaction, the association of CHCl(2) with NO(2) was found to be a barrierless carbon-to-nitrogen approach forming an energy-rich adduct a (HCl(2)CNO(2)) followed by isomerization to b(1) (trans-cis-HCl(2)CONO), which can easily interconvert to b(2), b(3), and b(4). Subsequently, the most feasible pathway is the 1,3-chlorine migration associated with N-O1 bond cleavage of b(1) leading to P(1) (CHClO + ClNO). The second competitive pathway is the 1,4-chlorine migration along with N-O1 bond rupture of b(4) giving rise to P(2) (CHClO + ClON). Moreover, some of P(1) and P(2) can further dissociate to give P(6) (CHClO + Cl + NO). The lesser followed competitive channel is the 1,3-H-shift from C to N atom along with N-O1 bond rupture of b(1) to form P(3) (CCl(2)O + HNO). The concerted 1,4-H-shift accompanied by N-O1 bond fission of b(3) to product P(4) (CCl(2)O + HON) is even much less feasible. For the singlet PES of CCl(3) + NO(2) reaction, the only primary product is found to be P(1) (CCl(2)O + ClNO), which can lead to P(2) (CCl(2)O + Cl + NO) via dissociation of ClNO. The obtained major products CHClO and CCl(2)O for CHCl(2) + NO(2) and CCl(3) + NO(2) reactions, respectively, are in good agreement with kinetic detection in experiment. Compared with the singlet pathways, the triplet pathways may have less contributions to both reactions. Because the rate-determining transition state involved in the feasible pathways lie above the reactants R, the title reactions may be important in high-temperature processes. The similarities and discrepancies among the CH(n)Cl(3-n) + NO(2) (n == 0-2) reactions are discussed in terms of the substitution effect. The present study may be helpful for further experimental investigation of the title reactions.  相似文献   

14.
The ion-pair dissociation dynamics of N(2)O -->(XUV) N(2)(+)(X (2)Sigma(g)(+), v) + O(-)((2)P(j)) at 16.248, 16.271, 16.389, and 16.411 eV have been studied using the velocity map imaging method and tunable XUV laser. The electronic structures of the ion-pair states have been studied by employing the ab initio quantum chemical calculation. The translational energy distributions and the angular distributions of the photofragments have been measured. The results show that about 40% of available energies are transformed into the translational energies, and the first excited vibrational states are populated most strongly for all four excitation energies. The anisotropy parameters beta are approximately 1. The ab initio calculations at the level of CASSCF6-311++g(3df) show that the equilibrium geometries of the ion-pair states are nonlinear with bond lengths R(N-N) = 1.10 A, R(N-O) = 2.15 A, and bond angle N-N-O = 103 degrees, respectively. The ion-pair states are formed by electron migration from the bonding sigma orbital of N[triple bond]N to the antibonding sigma orbital localized primarily on the O atom. Combining the experimental and theoretical results, it is concluded that the ion-pair dissociation occurs via predissociation of Rydberg states with (1)Sigma(+) symmetry, which converges to the ion-core N(2)O(+)(A (2)Sigma(+)).  相似文献   

15.
In a recent systematic study on the influence of the reaction temperature on the structure formation in the system CdCl2/H(HO3PCH2)2NH-CH2C6H4-COOH (H5L) /NaOH, [Cd3(H2O)3((O3PCH2)2NH-CH2C6H4-COOH)2].11H2O was obtained as a microcrystalline compound. We have now been able to elucidate the structure from single-crystal data: triclinic, P; a=5.4503(9), b=12.880(2), and c=16.417(3) A; alpha=67.841(6) degrees, beta=80.633(6) degrees, gamma=87.688(8) degrees, V=1052.9(3) A3; Z=1; R1=0.1143, R2=0.2108 (all data); 0.0705, 0.1823 ((I>2sigmaI)). The structure of [Cd3(H2O)3((O3PCH2)2NH-CH2C6H4-COOH)2].11H2O is built up of cadmium phosphonate layers connected by water-mediated hydrogen bonds between aryl-carboxylic acid groups and water molecules coordinated to Cd2+ ions of adjacent layers (C-OH...H2O...H2O-Cd2+). The title compound was characterized by IR spectroscopy and energy dispersive X-ray, elemental, and thermogravimetric analyses. Furthermore, temperature-dependent X-ray diffraction data are presented. [Cd3(H2O)3((O3PCH2)2NH-CH2C6H4-COOH)2].11H2O can be reversibly dehydrated, and mechanical stress and grinding in the presence of water leads to the intercalation of additional water molecules.  相似文献   

16.
The trifunctional ligand 2,6-[(C6H5)2P(O)CH2]2 C5H3NO (1), in a mixed EtOH/MeOH solvent system, when combined with an aqueous nitric acid solution of Pu(IV), produces a 2:1 coordination complex, [Pu(1)2(NO3)2](NO3)2. A single crystal of [Pu(NO3)2(2,6-[(C6H5)2P(O)CH2]2C5H3NO)2](NO3)2x1.5H2Ox0.5MeOH was characterized by X-ray diffraction analysis. The crystal is monoclinic, space group P2(1)/n, with a = 19.1011(9) A, b = 18.2873(9) A, c = 21.507(1) A, alpha = gamma = 90 degrees, beta = 108.64(1) degrees, and Z = 4. Two neutral ligands (1) are bonded to the Pu(IV) ion in a tridentate fashion. Two nitrate ions also occupy inner sphere coordination positions, while two additional NO3- ions reside in the outer sphere. Comparison of the solution optical absorbance and solid diffuse reflectance spectra shows the same Pu(IV) chromophore exists in both solid and solution states.  相似文献   

17.
The angular distribution of desorbing N(2) was studied in both the thermal decomposition of N(2)O(a) on Rh(100) at 60-140 K and the steady-state NO (or N(2)O) + D(2) reaction on Rh(100) and Rh(110) at 280-900 K. In the former, N(2) desorption shows two peaks at around 85 and 110 K. At low N(2)O coverage, the desorption at 85 K collimates at about 66 degrees off normal towards the [001] direction, whereas at high coverage, it sharply collimates along the surface normal. In the NO reduction on Rh(100), the N(2) desorption preferentially collimates at around 71 degrees off normal towards the [001] direction below about 700 K, whereas it collimates predominantly along the surface normal at higher temperatures. At lower temperatures, the surface nitrogen removal in the NO reduction is due to the process of NO(a) + N(a) --> N(2)O(a) --> N(2)(g) + O(a). On the other hand, in the steady-state N(2)O + D(2) reaction on Rh(110), the N(2) desorption collimates closely along the [001] direction (close to the surface parallel) below 340 K and shifts to ca. 65 degrees off normal at higher temperatures. In the reduction with CO, the N(2) desorption collimates along around 65 degrees off normal towards the [001] direction above 520 K, and shifts to 45 degrees at 445 K with decreasing surface temperature. It is proposed that N(2)O is oriented along the [001] direction on both surfaces before dissociation and the emitted N(2) is not scattered by adsorbed hydrogen.  相似文献   

18.
The Coulomb explosion dynamics of N2O in intense laser fields (800 nm, 60 fs, approximately 0.16 PWcm2) is studied by the coincidence momentum imaging method. From the momentum correlation maps obtained for the three-body fragmentation pathway, N2O3+-->N++N++O+, the ultrafast structural deformation dynamics of N2O prior to the Coulomb explosion is extracted. It is revealed that the internuclear N-N and N-O distances stretch simultaneously as the bond angle less than approximately N-N-O decreases. In addition, two curved thin distributions are identified in the momentum correlation maps, and are interpreted well as those originating from the sequential dissociation pathway, N2O3+-->N++NO2+-->N++N++O+.  相似文献   

19.
Reaction thermodynamics and potential energy surfaces are calculated using density functional theory to investigate the mechanism of the reductive cleavage of the N-O bond by the mu(4)-sulfide-bridged tetranuclear Cu(Z) site of nitrous oxide reductase. The Cu(Z) cluster provides an exogenous ligand-binding site, and, in its fully reduced 4Cu(I) state, the cluster turns off binding of stronger donor ligands while enabling the formation of the Cu(Z)-N(2)O complex through enhanced Cu(Z) --> N(2)O back-donation. The two copper atoms (Cu(I) and Cu(IV)) at the ligand-binding site of the cluster play a crucial role in the enzymatic function, as these atoms are directly involved in bridged N(2)O binding, bending the ligand to a configuration that resembles the transition state (TS) and contributing the two electrons for N(2)O reduction. The other atoms of the Cu(Z) cluster are required for extensive back-bonding with minimal sigma ligand-to-metal donation for the N(2)O activation. The low reaction barrier (18 kcal mol(-)(1)) of the direct cleavage of the N-O bond in the Cu(Z)-N(2)O complex is due to the stabilization of the TS by a strong Cu(IV)(2+)-O(-) bond. Due to the charge transfer from the Cu(Z) cluster to the N(2)O ligand, noncovalent interactions with the protein environment stabilize the polar TS and reduce the activation energy to an extent dependent on the strength of proton donor. After the N-O bond cleavage, the catalytic cycle consists of a sequence of alternating protonation/one-electron reduction steps which return the Cu(Z) cluster to the fully reduced (4Cu(I)) state for future turnover.  相似文献   

20.
A gas-phase electron diffraction study of the azoxy compound which was synthesized by the reaction of CF3NO with N2F4 in a Pyrex glass vessel results in a trans CF3N(O)NF structure (F trans to CF3), although quantum chemical calculations (MP2 and B3LYP) predict a greater stability of the cis CF3NN(O)F isomer by about 12 kcal/mol. The CF3 group eclipses the N=N double bond. The following skeletal geometric parameters (r(a) values with 3sigma uncertainties) were obtained: N=N 1.287(15) A; N=O 1.231(6) A; N-F 1.380(6) A; N-C 1.498(6) A; N=N=O 131.2(13) degrees; N=N-F 103.5(13) degrees; N=N-C 114.0(12) degrees. The bond lengths in CF3N(O)NF are compared to those in azo, nitryl, and nitrosyl compounds with fluorine and/or CF3 substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号