首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic peptides provide attractive lead compounds for drug discovery and excellent molecular probes in biomedical research. Large combinatorial libraries of cyclic peptides can now be routinely synthesized by the split-and-pool method and screened against biological targets. However, post-screening sequence determination of hit peptides has been problematic. In this report, a high-throughput method for the sequence determination of cyclic peptide library members has been developed. TentaGel microbeads (90 mum) were spatially segregated into outer and inner layers; cyclic peptides were displayed on the bead surface, whereas the inner core of each bead contained the corresponding linear peptide as the encoding sequence. After screening of the cyclic peptide library against a macromolecular target, the identity of hit peptides was determined by sequencing the linear encoding peptides inside the bead using a partial Edman degradation/mass spectrometry method. On-bead screening of an octapeptide library (theoretical diversity of 160 000) identified cyclic peptides that bind to streptavidin. A 400-member library of tyrocidine A analogues was synthesized on TentaGel macrobeads and solution-phase screening of the library directly against bacterial cells identified a tyrocidine analogue of improved antibacterial activity. Our results demonstrate that the new method for cyclic peptide sequence determination is reliable, operationally simple, rapid, and inexpensive and should greatly expand the utility of cyclic peptides in biomedical research.  相似文献   

2.
3.
Some cyclic peptides and depsipeptides are synthesized in microorganisms by large multienzymes called nonribosomal peptide synthetases. The structures of peptide products originating in this way are complex and diverse and are microorganism-specific. This work proposes the use of fungal cyclic peptides and depsipeptides as extremely specific markers of fungal infections. Since a reliable molecular tool for diagnosing fungal infections at an early stage is still missing, we present mass spectrometry as a new, modern, broadband (with respect to fungal strain) and specific tool for clinical mycologists. More than 40 different fungal species can be rapidly characterized according to specific families of cyclic peptides, and in some cases, a particular fungal strain can be identified on the basis of its cyclopeptide profile. This paper is also aimed at initiating discussion on the biological role of these secondary metabolites, especially of those synthesized by medically important strains. Proven cytotoxic, anti-inflammatory or immunosuppressive activities of some cyclic peptides indicate that these molecules may contribute to the synergistic array of fungal virulence factors and support microbial invasion during fungal infection. In addition to an overview on recent mass spectrometric protocols for cyclic peptide sequencing, the structures of new peptides from Paecilomyces and Pseudallescheria are presented.  相似文献   

4.
Recent computational methods have made strides in discovering well-structured cyclic peptides that preferentially populate a single conformation. However, many successful cyclic-peptide therapeutics adopt multiple conformations in solution. In fact, the chameleonic properties of some cyclic peptides are likely responsible for their high cell membrane permeability. Thus, we require the ability to predict complete structural ensembles for cyclic peptides, including the majority of cyclic peptides that have broad structural ensembles, to significantly improve our ability to rationally design cyclic-peptide therapeutics. Here, we introduce the idea of using molecular dynamics simulation results to train machine learning models to enable efficient structure prediction for cyclic peptides. Using molecular dynamics simulation results for several hundred cyclic pentapeptides as the training datasets, we developed machine-learning models that can provide molecular dynamics simulation-quality predictions of structural ensembles for all the hundreds of thousands of sequences in the entire sequence space. The prediction for each individual cyclic peptide can be made using less than 1 second of computation time. Even for the most challenging classes of poorly structured cyclic peptides with broad conformational ensembles, our predictions were similar to those one would normally obtain only after running multiple days of explicit-solvent molecular dynamics simulations. The resulting method, termed StrEAMM (Structural Ensembles Achieved by Molecular Dynamics and Machine Learning), is the first technique capable of efficiently predicting complete structural ensembles of cyclic peptides without relying on additional molecular dynamics simulations, constituting a seven-order-of-magnitude improvement in speed while retaining the same accuracy as explicit-solvent simulations.

The StrEAMM method enables predicting the structural ensembles of cyclic peptides that adopt multiple conformations in solution.  相似文献   

5.
Head-to-tail cyclic peptides have been reported to bind to multiple, unrelated classes of receptor with high affinity. They may therefore be considered to be privileged structures. This review outlines the strategies by which both macrocyclic cyclic peptides and cyclic dipeptides or diketopiperazines have been synthesised in combinatorial libraries. It also briefly outlines some of the biological applications of these molecules, thereby justifying their inclusion as privileged structures.  相似文献   

6.
In this letter, we report a palladium-catalyzed enyne cycloisomerization of linear peptides to generate small cyclic peptides embedded with a conjugated 1,3-diene. The utility of these resulting macrocyclic dienes is demonstrated by carrying out [4+2] cycloadditions with dienophiles to generate constrained cyclic peptides with cyclic linkers.  相似文献   

7.
Cyclic peptides have been widely reported to have therapeutic abilities in the treatment of cancer. This has been proven through in vitro and in vivo studies against breast, lung, liver, colon, and prostate cancers, among others. The multitude of data available in the literature supports the potential of cyclic peptides as anticancer agents. This review summarizes the findings from previously reported studies and discusses the different cyclic peptide compounds, the sources, and their modes of action as anticancer agents. The prospects and future of cyclic peptides will also be described to give an overview on the direction of cyclic peptide development for clinical applications.  相似文献   

8.
Azole-based cyclic peptides found in ascidians ("sea squirts") of the genus Lissoclinum have a high propensity to chelate metal ions. This Highlight summarises the current evidence for marine cyclic peptide-metal congruence, and the structural and stereochemical features in cyclic peptides which seem necessary to facilitate metal complexation. The biological relevance of the metal ions in these associations, including their possible role in the assembly of cyclic peptides in the marine milieu, is also briefly considered. Finally, the synthesis of natural, and some novel non-natural, azole-based cyclic peptides from the cyclooligomerisation and assembly of azole-based amino acids, including in the presence of metal ions, is presented.  相似文献   

9.
The N-methylation of cyclic peptides can be used to modify the activity and/or selectivity of biologically active peptides. As N-methylation introduces different flexibility and lipophilicity, it can also improve the bioavailability (the ADMET profile). To search for conformationally constrained cyclic peptides, a library of 30 different N-methylated peptides with the basic sequence cyclo(-D-Ala-L-Ala4-) was synthesized. Based on the NMR analysis, seven of these peptides exhibited single conformations (>98%). The structural features of these peptides were determined by a combination of NMR and distance geometry and then further refined by molecular dynamics simulations in an explicit DMSO solvent box. The structures provided from these efforts can now serve as templates for the rational design of cyclic pentapeptides with a distinct backbone conformation or for "spatial screening" to explore the bioactive conformation of medically important peptide systems.  相似文献   

10.
A series of synthetic cyclic decapeptides and other smaller cyclic peptides were analyzed using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The investigated compounds were cyclized in a head-to-tail manner and contained non-proteinaceous amino acids, such as D-phenylalanine, D,L-4-carboxyphenylalanine, epsilon-aminocaproic acid, and gamma-aminobutyric acid, and were synthesized in a program to develop inhibitors of pp60(c-src) (Src), a tyrosine kinase that is involved in signal transduction and growth regulation. Post-source decay (PSD) spectra of the cyclic peptides featured abundant sequence ions. Two preferential ring opening reactions were detected resulting in linear fragment ions with an N-terminus of proline and a C-terminus of glutamic acid, respectively. MALDI-PSD spectra even permitted de novo sequencing of some cyclic peptides. Systematic studies on cyclic peptides using this method of fragmentation have not been reported to date. This work presents an easy mass spectrometric method, MALDI-PSD, for the characterization and identification of cyclic peptides.  相似文献   

11.
Cyclic homodetic peptides are very appealing for medicinal chemistry programs. In addition to the high efficiency and selectivity inherently associated with peptides, a cyclic structure totally formed by amide bonds increases their stability under physiological conditions. Here Fmoc-MeDbz-resin was studied for the preparation of these peptides. Our results demonstrate the usefulness of this strategy for the preparation of cyclic “head-to-side chain” peptides through cyclative cleavage (simultaneous cyclization and release from the resin). In contrast, for the synthesis of the “head-to-tail” counterparts, the cyclization-cleavage should be carried out in the presence of thiophenol.  相似文献   

12.
13.
Biaryl-bridged cyclic peptides comprise an intriguing class of structurally diverse natural products with significant biological activity. Especially noteworthy are the antibiotics arylomycin and its synthetic analogue G0775, which exhibits potent activity against Gram-negative bacteria. Herein, we present a simple, flexible, and reliable strategy based on activating-group-assisted catalytic oxidative coupling for assembling biaryl-bridged cyclic peptides from natural amino acids. The synthetic approach was utilized for preparing a number of natural and unnatural biaryl-bridged cyclic peptides, including arylomycin/G0775 and RP 66453 cyclic cores.  相似文献   

14.
We have synthesized and characterized a new class of heme-peptide complexes using disulfide-linked hairpin-turn and cyclic peptides and compared these to their linear analogues. The binding affinities, helicities, and mechanism of binding of linear, hairpin, and cyclic peptides to [FeIII(coproporphyrin-I)]+ have been determined. In a minimalist approach, we utilize amphiphilic peptide sequences (15-mers), where a central histidine provides heme ligation, and the hydrophobic effect is used to optimize heme-peptide complex stability. We have incorporated disulfide bridges between amphiphilic peptides to make hairpin and even cyclic peptides that bind heme extremely well, roughly 5 x 106 times more strongly than histidine itself. CD studies show that the cyclic peptide heme complexes are completely alpha-helical. NMR spectra of paramagnetic complexes of the peptides show that the 15-mer peptides bind sequentially, with an observable monopeptide, high-spin intermediate. In contrast, the cyclic peptide complexes ligate both imidazoles cooperatively to the heme, producing only a low-spin complex. Electrochemical measurements of the E1/2 of the FeIII(coproporphyrin-I)+ complexes of these peptides are all at fairly low potentials, ranging from -215 to -252 mV versus NHE at pH 7.  相似文献   

15.
《中国化学会会志》2018,65(4):405-415
Cyclic peptides, because of their unique spatial conformations, simplicity, and limited conformational freedom, are widely used as model molecules for larger peptides in chemistry and biochemistry. In this work, the ionization energies and photoelectron spectra of different conformers of the cyclic peptides (n = 2–15) were calculated using the symmetry‐adapted cluster‐configuration interaction (SAC‐CI) method and D95 + (d,p) basis set in the gas phase. The calculated photoelectron spectra were used to study the electronic structures of the cyclic peptides. It was observed that the first ionization energy of the cyclic peptides decreases with the ring size, reaches a minimum, and then increases. In addition, the first ionization band of the cyclic peptides was assigned to the ionization of the lone electron pairs of the nitrogen atoms, although there are π electrons of the CO bond and the lone electron pairs of oxygen atoms in the structure of the peptides.  相似文献   

16.
设计合成了具有2个活性序列的线性和环状多肽及具有单个活性序列的短链多肽, 研究了它们的杀菌活性、 细胞毒性及溶血性. 结果表明, 线性肽和环状肽的杀菌活性高于短链肽. 利用计算模拟的方法计算了多肽与细菌细胞膜中一种重要的成分磷脂酰甘油(DMPG)的结合能. 结果表明, 多肽-DMPG的结合能与多肽的杀菌活性具有较高的相关性, 线性和环状多肽与DMPG的结合能大于短链肽. 线性和环状多肽均含有2个活性序列, 可提供多个荷正电氨基酸与荷负电的磷脂结合, 结合能较大, 杀菌活性较强. 采用模拟生物膜对其中几条多肽的作用机理进行了初步研究. 结果表明, 该类多肽有可能使正常哺乳动物细胞的细胞膜产生孔洞; 而对于细菌细胞膜, 多肽并未在膜上产生明显孔洞, 而是引起了细菌细胞膜的聚集.  相似文献   

17.
Bu X  Wu X  Xie G  Guo Z 《Organic letters》2002,4(17):2893-2895
[reaction: see text] Head-to-tail cyclization of peptides is a multistep process involving tedious C-terminal activation and side chain protection. Here we report a facile, quantitative cyclization method in aqueous ammonia solution for the total syntheses of the cyclic decapeptide antibiotic Tyrocidine A and its analogues from their fully deprotected linear thioester precursors on a solid support. This novel aqueous method is conformation-dependent and may be applicable to syntheses of other natural cyclic peptides.  相似文献   

18.
Cyclic peptides are of considerable interest as potential protein ligands. It has been postulated that cyclic molecules might be more cell permeable than their linear counterparts due to their reduced conformational flexibility. We report a study that tests this hypothesis by using a quantitative, reporter gene-based assay that measures the relative cell permeability of steroid conjugates of molecules of interest. We demonstrate that cyclic peptides are, in fact, not generally more permeable than their linear counterparts.  相似文献   

19.
Cyclic penta-, hexa- and heptapeptides have been designed, synthesized and their fragmentations induced by multistage tandem mass spectrometry have been studied. Under low-energy collisionally activated decomposition (CAD), the protonated cyclic peptides mainly dissociate via ring opening pathways and the corresponding bn --> bn-1 pathways to form several sets of b ions as oxazolone rings (and b1 ions as aziridinone rings). Through repeated observation of these b ions in multistep CAD experiments, accurate sequencing and head-to-tail ring structure of cyclic peptides can be determined. The mistaken assignments of these b ions can be avoided by this sequencing method. Semiempirical molecular orbital calculations have been utilized to provide insight into the proposed dissociation mechanism. In addition, for cyclic peptides that include an Asn residue, the nitrogen of the Asn side chain is observed to be preferentially protonated, which can induce a unique ring-opening pathway with a loss of ammonia that competes with the conventional ring opening pathway.  相似文献   

20.
Biaryl‐bridged cyclic peptides comprise an intriguing class of structurally diverse natural products with significant biological activity. Especially noteworthy are the antibiotics arylomycin and its synthetic analogue G0775, which exhibits potent activity against Gram‐negative bacteria. Herein, we present a simple, flexible, and reliable strategy based on activating‐group‐assisted catalytic oxidative coupling for assembling biaryl‐bridged cyclic peptides from natural amino acids. The synthetic approach was utilized for preparing a number of natural and unnatural biaryl‐bridged cyclic peptides, including arylomycin/G0775 and RP 66453 cyclic cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号