首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A constructive method of obtaining unbiased estimates of the unknown parameters and characteristics of a continuous finite Markow chain (CMC) ν(t), t≥0, with states 1, 2, ..., k and constant transition intensitiesλ i,j<∞, i≠j, i, j=1, 2,..., k; $$\lambda _{i,i} = 0,\quad q_i = \sum\limits_{j = 1}^k {\lambda _{i,j} } ,\quad i = 1, 2,..., k,$$ is considered in the present paper for a wide class of stopping rules.  相似文献   

2.
Let G be a homogeneous group, and let X 1, X 2, … , X m be left invariant real vector fields being homogeneous of degree one on G. We consider the following Dirichlet boundary value problem of the sub-Laplace equation involving the critical exponent and singular term: $$\left\{\begin{array}{ll}-\sum_{j=1}^{m}X_j^2u(x)-\frac{a}{\|x\|^\nu}u(x)=u^{\frac{Q+2}{Q-2}}(x), x\in\Omega,\\ u(x)=0, \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\,\,\,\, x\in \partial\Omega,\end{array}\right.$$ where ${\Omega\subset G}$ is a bounded domain with smooth boundary and ${\mathbf{0}\in\Omega}$ , Q is the homogeneous dimension of G, ${a\in \mathbb{R},\ \nu <2 }$ . We boost u to ${L^p(\Omega)}$ for any ${1\leq p < \infty}$ if ${u\in S^{1,2}_0(\Omega)}$ is a weak solution of the problem above.  相似文献   

3.
We consider the following q-eigenvalue problem for the p-Laplacian $$\left\{\begin{array}{ll}-{\rm div}\big( |\nabla u|^{p-2}\nabla u\big) = \lambda \|u\|_{L^{q}(\Omega)}^{p-q}|u|^{q-2}u \quad \quad\, {\rm in} \,\,\,\, \Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,\,{\rm on } \,\,\,\, \partial\Omega,\end{array}\right.$$ where \({\lambda\in\mathbb{R},}\) p > 1, Ω is a bounded and smooth domain of \({\mathbb{R}^{N},}\) N > 1, \({1\leq q < p^{\star}}\) , \({p^{\star}=\frac{Np}{N-p}}\) if p < N and \({p^{\star}=\infty}\) if \({p\geq N.}\) Let λ q denote the first q-eigenvalue. We prove that in the super-linear case, \({p < q < p^{\star},}\) there exists \({\epsilon_{q}>0}\) such that if \({\lambda\in(\lambda_{q},\lambda _{q}+\epsilon_{q})}\) is a q-eigenvalue, then any corresponding q-eigenfunction does not change sign in Ω. As a consequence of this result we obtain, in the super-linear case, the isolatedness of λ q for those Ω such that the Lane–Emden problem $$\left\{\begin{array}{ll}-{\rm div}\big(|\nabla u|^{p-2}\nabla u\big) = |u|^{q-2}u \qquad\quad\quad\quad \,\,{\rm in}\,\,\,\Omega\\ \quad\quad\quad \quad \quad \quad u = 0 \quad\qquad\qquad \quad\quad \,{\rm on } \,\,\, \partial\Omega,\end{array}\right.$$ has exactly one positive solution.  相似文献   

4.
We study the problem $$ \left\{\begin{array}{ll} {-\varepsilon^{2}\mathcal{M}^+_{\lambda,\Lambda}(D^{2}u) = f (x, u)} \quad\; {\rm in} \; \Omega,\\ {u = 0} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad {\rm on} \; \partial{\Omega}, \end{array} \right.$$ where Ω is a smooth bounded domain in ${\mathbb{R}^{N},N > 2,}$ and show it possesses nontrivial solutions for small values of ε provided f is a nonnegative continuous function which has a positive zero. The multiplicity result is based on degree theory together with a new Liouville type theorem for ${-{M}^+_{\lambda,\Lambda}(D^{2}u) = f(u)}$ in ${\mathbb{R}^{N}}$ for nonnegative nonlinearities with zeros.  相似文献   

5.
Let E be a real reflexive strictly convex Banach space which has uniformly Gâteaux differentiable norm. Let ${\mathcal{S} = \{T(s): 0 \leq s < \infty\}}$ be a nonexpansive semigroup on E such that ${Fix(\mathcal{S}) := \cap_{t\geq 0}Fix( T(t) ) \not= \emptyset}$ , and f is a contraction on E with coefficient 0 <  α <  1. Let F be δ-strongly accretive and λ-strictly pseudo-contractive with δ + λ >  1 and ${0 < \gamma < \min\left\{\frac{\delta}{\alpha}, \frac{1-\sqrt{ \frac{1-\delta}{\lambda} }}{\alpha} \right\} }$ . When the sequences of real numbers {α n } and {t n } satisfy some appropriate conditions, the three iterative processes given as follows : $${\left.\begin{array}{ll}{x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n F)T(t_n)x_n,\quad n\geq 0,}\\ {y_{n+1} = \alpha_n \gamma f(T(t_n)y_n) + (I - \alpha_n F)T(t_n)y_n,\quad n\geq 0,}\end{array}\right.}$$ and $$ z_{n+1} = T(t_n)( \alpha_n \gamma f(z_n) + (I - \alpha_n F)z_n),\quad n\geq 0 $$ converge strongly to ${\tilde{x}}$ , where ${\tilde{x}}$ is the unique solution in ${Fix(\mathcal{S})}$ of the variational inequality $${ \langle (F - \gamma f)\tilde {x}, j(x - \tilde{x}) \rangle \geq 0,\quad x\in Fix(\mathcal{S}).}$$ Our results extend and improve corresponding ones of Li et al. (Nonlinear Anal 70:3065–3071, 2009) and Chen and He (Appl Math Lett 20:751–757, 2007) and many others.  相似文献   

6.
This paper is concerned with power concavity properties of the solution to the parabolic boundary value problem $$\begin{aligned} (P)\quad \left\{ \begin{array}{l@{\quad }l} \partial _t u=\varDelta u +f(x,t,u,\nabla u) &{} \text{ in }\quad \varOmega \times (0,\infty ),\\ u(x,t)=0 &{} \text{ on }\quad \partial \varOmega \times (0,\infty ),\\ u(x,0)=0 &{} \text{ in }\quad \varOmega , \end{array} \right. \end{aligned}$$ where $\varOmega $ is a bounded convex domain in $\mathbf{R}^n$ and $f$ is a nonnegative continuous function in $\varOmega \times (0,\infty )\times \mathbf{R}\times \mathbf{R}^n$ . We give a sufficient condition for the solution of $(P)$ to be parabolically power concave in $\overline{\varOmega }\times [0,\infty )$ .  相似文献   

7.
In this paper, we will prove the existence of infinitely many solutions for the following elliptic problem with critical Sobolev growth and a Hardy potential: $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2}u+a u\quad {\rm in}\;\Omega,\quad u=0 \quad {\rm on}\; \partial\Omega,\qquad (*)$$ under the assumptions that N ≥ 7, ${\mu\in \left[0,\frac{(N-2)^2}4-4\right)}$ and a > 0, where ${2^{\ast}=\frac{2N}{N-2}}$ , and Ω is an open bounded domain in ${\mathbb{R}^N}$ which contains the origin. To achieve this goal, we consider the following perturbed problem of (*), which is of subcritical growth, $$-\Delta u-\frac{\mu}{|x|^2}u = |u|^{2^{\ast}-2-\varepsilon_n}u+au \quad {\rm in}\,\Omega, \quad u=0 \quad {\rm on}\;\partial\Omega,\qquad(\ast\ast)_n$$ where ${\varepsilon_{n} > 0}$ is small and ${\varepsilon_n \to 0}$ as n → + ∞. By the critical point theory for the even functionals, for each fixed ${\varepsilon_{n} > 0}$ small, (**) n has a sequence of solutions ${u_{k,\varepsilon_{n}} \in H^{1}_{0}(\Omega)}$ . We obtain the existence of infinitely many solutions for (*) by showing that as n → ∞, ${u_{k,\varepsilon_{n}}}$ converges strongly in ${H^{1}_{0}(\Omega)}$ to u k , which must be a solution of (*). Such a convergence is obtained by applying a local Pohozaev identity to exclude the possibility of the concentration of ${\{u_{k,\varepsilon_n}\}}$ .  相似文献   

8.
Let \({A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}\) be an annulus. We consider the following singularly perturbed elliptic problem on A $$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$ where \({1 < p < \frac{m+3}{m-1}}\) . We shall prove the existence of a positive solution \({u_\epsilon }\) which concentrates on two different orthogonal spheres of dimension (m?1) as \({\varepsilon \to 0}\) . We achieve this by studying a reduced problem on an annular domain in \({\mathbb{R}^{m+1}}\) and analysing the profile of a two point concentrating solution in this domain.  相似文献   

9.
Let M?=?{ 1, 2, . . . ,?n?} and let ${\mathcal {V}=\{\,I \subseteq M: 1 \in I\,\}}$ , where n is an integer greater than 1. Denote ${M{\setminus}{I}}$ by I c for ${I \in \mathcal {V}.}$ We investigate the solution of the following generalized quartic functional equation $$\begin{array}{ll} \sum\limits_{I \in\mathcal {V}}f\, \left({\sum\limits_{i \in I}}a_ix_i-\sum\limits_{i \in I^c}a_ix_i\right) \, = \,2^{n-2} \sum\limits_{1\leq i < j \leq n}a^2_{i}a^2_{j} \left[f(x_{i}+x_{j})+f(x_{i}-x_{j})\right] \\ \qquad \qquad \qquad \quad\quad\quad \quad\quad\quad\quad +\,2^{n-1} \sum\limits^{n}_{i=1}a^2_{i} \left(a^2_{i}-\sum\limits^{n}_{\substack{{j=1}\\{j\neq i}}}a^2_{j}\right)f(x_{i}) \end{array}$$ in β-Banach modules on a Banach algebra, where ${a_{1},\ldots, a_{n}\in \mathbb{Z}{\setminus}\{0\}}$ with a ? ?≠ ±1 for all ${\ell \in \{1 , 2, \ldots ,\,n-1\}}$ and a n ?=?1. Moreover, using the fixed point method, we prove the generalized Hyers–Ulam stability of the above generalized quartic functional equation. Finally, we give an example that the generalized Hyers–Ulam stability does not work.  相似文献   

10.
We consider the following fourth order mean field equation with Navier boundary condition $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\,\,{\rm in}\, \Omega,{\quad}u = \Delta u = 0\,\,{\rm on}\,\partial \Omega,\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(*)$$ where h is a C 2,?? positive function, ?? is a bounded and smooth domain in ${\mathbb{R}^4}$ . We prove that for ${\rho \in (32m\sigma_3, 32(m + 1)\sigma_3)}$ the degree-counting formula for (*) is given by $$d(\rho)=\left\{\begin{array}{ll}\frac{1}{m!} (-\chi (\Omega) +1) \cdot\cdot \cdot (-\chi(\Omega)+m) & {\rm for}\, m >0 ,\\ 1 & {\rm for}\, m=0\end{array}\right.$$ where ??(??) is the Euler characteristic of ??. Similar result is also proved for the corresponding Dirichlet problem $$\Delta^2 u = \rho \frac{h(x) e^{u}}{\int_\Omega h e^{u}}\quad{\rm in}\,\Omega, \quad u = \nabla u = 0 \quad {\rm on}\,\,\partial \Omega.\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(**)$$   相似文献   

11.
In this article, we discuss the recent work of Lin and Zhang on the Liouville system of mean field equations: $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} ({\frac{{h_j}e^{u_{j}}}{\int_{M}{h_{j}e^{u_{j}}}}-{\frac{1}{|M|}}})=0\,\, \quad{\rm on}\, M,$$ where M is a compact Riemann surface and |M| is the area, or $$\Delta{u}_i+\sum_{j}a_{ij}\rho_{j} \frac{{h_j}e^{u_{j}}}{\int_{\Omega}{h_{j}e^{u_{j}}}}=0\,\, \quad{\rm in}\, \Omega,$$ $${u_j}=0,\,\, \quad{\rm on}\, \partial\Omega, $$ where ?? is a bounded domain in ${\mathbb{R}^2}$ . Among other things, we completely determine the set of non-critical parameters and derive a degree counting formula for these systems.  相似文献   

12.
I show that in order to solve the functional equation $$F_{1}(x+y,z)+F_{2}(y+z,x)F_{3}(z+x,\ y)+F_{4}(x,y)+F_{5}(y,z)+F_{6}(z,x)=0$$ for six unknown functions (x,y,z are elements of an abelian monoid, and the codomain of each F j is the same divisible abelian group) it is necessary and sufficient to solve each of the following equations in a single unknown function $$\matrix{\quad\quad\quad\quad\quad\quad\quad \quad\quad\quad\quad\quad\quad G(x+y,\ z)- G(x,z)- G(y,z)=G(y+z,x)- G(y,x)- G(z,x)\cr \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad H(x+y,\ z)- H(x,z)- H(y,x)+H(y+z,\ x)- H(y,x)- H(z,x)\cr +H(z+x,\ y)- H(z,y)- H(x,y)=0.}$$   相似文献   

13.
In 1894, Pincherle proved a theorem relating the existence of a minimal solution of three-term recursion relations to the convergence of a continued fraction. The present paper deals with solutions of an infinite system $$q_n = \sum\limits_{j - 1}^{k - 1} {_{Pk - j,n} } q_{n - j} ,\quad p_{1,n} \ne 0,\quad n = 0,1, \ldots ,$$ of k-term recursion relations with coefficients in a field F. We study the connection between such relations and multidimensional ((k ? 2)-dimensional) continued fractions. A multidimensional analog of Pincherle's theorem is established.  相似文献   

14.
In this paper, we are able to sharpen Hua??s result by proving that almost all integers satisfying some necessary congruence conditions can be represented as $$N=p_1^3+ \cdots+p_s^3 \quad \mbox{with } \biggl \vert p_j-\sqrt[3]{\frac {N}{s}}\biggr \vert \leqslant U, j=1,\ldots, s, $$ where p j are primes and $U=N^{\frac{1}{3}-\delta_{s}+\varepsilon }$ with $\delta_{s}=\frac{s-4}{6s+72}$ , where s=5,6,7,8.  相似文献   

15.
The aim of this paper is investigating the existence and the multiplicity of weak solutions of the quasilinear elliptic problem $$\left\{\begin{array}{ll}-\Delta_p u\ =\ g(x, u) \quad {\rm in} \quad \Omega,\\ u=0 \qquad \qquad \qquad {\rm on}\quad \partial\Omega,\end{array}\right.$$ where ${1 < p < + \infty, \Delta_p u = {\rm div}(|\nabla {u}|^{p-2}\nabla {u})}$ , Ω is an open bounded domain of ${\mathbb{R}^N (N \geq 3)}$ with smooth boundary ?Ω and the nonlinearity g behaves as u p?1 at infinity. The main tools of the proof are some abstract critical point theorems in Bartolo et al. (Nonlinear Anal. 7: 981–1012, 1983), but extended to Banach spaces, and two sequences of quasi–eigenvalues for the p–Laplacian operator as in Candela and Palmieri (Calc. Var. 34: 495–530, 2009), Li and Zhou (J. Lond. Math. Soc. 65: 123–138, 2002).  相似文献   

16.
We consider an eigenvalue problem of the form $$\left.\begin{array}{cl}-\Delta_{p} u = \lambda\, K(x)|u|^{p-2}u \quad \mbox{in}\quad \Omega^e\\ u(x) =0 \quad \mbox{for}\quad \partial \Omega\\ u(x) \to 0 \quad \mbox{as}\quad |x| \to \infty,\end{array} \right \}$$ where \({\Omega \subset \mathrm{I\!R\!}^N}\) is a simply connected bounded domain, containing the origin, with C 2 boundary \({\partial \Omega}\) and \({\Omega^e:=\mathrm{I\!R\!^N} \setminus \overline{\Omega}}\) is the exterior domain, \({1 < p < N, \Delta_{p}u:={\rm div}(|\nabla u|^{p-2} \nabla u)}\) is the p-Laplacian operator and \({K \in L^{\infty}(\Omega^e) \cap L^{N/p}(\Omega^e)}\) is a positive function. Existence and properties of principal eigenvalue λ 1 and its corresponding eigenfunction are established which are generally known in bounded domain or in \({\mathrm{I\!R\!}^N}\) . We also establish the decay rate of positive eigenfunction as \({|x| \to \infty}\) as well as near .  相似文献   

17.
One considers the equation $$ \mathrm{div}\left( {{u^{\sigma }}Du} \right)+b(x)Du-{u_t}=f(x)g(u),\quad x\in {{\mathbb{R}}^n},\quad t\in \left( {0,\infty } \right), $$ where $ b:{{\mathbb{R}}^n}\to {{\mathbb{R}}^n} $ and $ f:{{\mathbb{R}}^n}\to [0,\infty ) $ are locally bounded measurable functions, g: (0,∞)??(0,∞) is continuous and nondecreasing, One obtains the conditions ensuring that its positive solutions stabilize to zero as t?→?∞.  相似文献   

18.
We study the following nonlinear Schrödinger equations $$\begin{array}{lll}(-i\varepsilon\nabla+A(x))^2 w + V(x)w = W(x)g(|w|)w; \quad \quad \quad \quad \quad \quad \quad \quad \quad (0.1)\\(-i\varepsilon\nabla+A(x))^2 w + V(x)w = W(x)\left(g(|w|)+|w|^{2^*-2}\right)w,\quad \quad \quad\,\,(0.2)\end{array}$$ for ${w \in H^1\left( \mathbb{R}^N, \mathbb{C} \right)}$ , where g(|w|)w is super linear and subcritical, 2* = 2N/(N ? 2) if N > 2 and =  if N = 2, min V > 0 and inf W > 0. Under proper assumptions we explore the existence and concentration phenomena of semiclassical solutions of (0.1). The most interesting result obtained here refers to the critical case. We establish the existence and describe the concentration of semiclassical ground states of (0.2) provided either min Vτ 0 for some τ0 > 0, or ${\max W > \kappa_{0}}$ for some ${\kappa_0 > 0}$ .  相似文献   

19.
With each infinite grid X: ? < x ?1 < x 0 < x 1 < ? we associate the system of trigonometric splines $\{ \mathfrak{T}_j^B \}$ of class C 1(α, β), the linear space $$T^B (X)\mathop = \limits^{def} \{ \tilde u|\tilde u = \sum\limits_j {c_j \mathfrak{T}_j^B } \quad \forall c_j \in \mathbb{R}^1 \} ,$$ and the functionals g (i) ∈ (C 1(α, β))* with the biorthogonality property: $\left\langle {g(i),\mathfrak{T}_j^B } \right\rangle = \delta _{i,j}$ (here $\alpha \mathop = \limits^{def} \lim _{j \to - \infty } x_j ,\quad \beta \mathop = \limits^{def} \lim _{j \to + \infty } x_j$ ). For nested grids $\bar X \subset X$ , we show that the corresponding spaces $T^B (\bar X)$ are embedded in $T^B (X)$ and obtain decomposition and reconstruction formulas for the spline-wavelet expansion $T^B (X) = T^B (\bar X)\dot + W$ derived with the help of the system of functionals indicated above.  相似文献   

20.
We investigate the asymptotic behaviour as p of sequences of positive weak solutions of the equation $$\left\{\begin{array}{l}-\Delta_p u = \lambda\,u^{p-1}+ u^{q(p)-1}\quad {\rm in}\quad \Omega,\\ u = 0 \quad {\rm on}\quad \partial\Omega,\end{array} \right.$$ where λ > 0 and either 1 < q(p) < p or pq(p), with ${{\lim_{p\to\infty}{q(p)}/{p}=Q\neq1}}$ . Uniform limits are characterized as positive viscosity solutions of the problem $$\left\{\begin{array}{l}\min\left\{|\nabla u (x)| - \max\{\Lambda\,u (x),u ^Q(x)\}, -\Delta_{\infty}u (x)\right\} = 0 \quad {\rm in} \quad \Omega,\\ u = 0\quad {\rm on}\quad \partial\Omega.\end{array}\right.$$ for appropriate values of Λ > 0. Due to the decoupling of the nonlinearity under the limit process, the limit problem exhibits an intermediate behavior between an eigenvalue problem and a problem with a power-like right-hand side. Existence and non-existence results for both the original and the limit problems are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号