首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To protect carbon/carbon (C/C) composites from oxidation, a new type of oxidation protective coating has been produced by a two-step pack cementation technique. XRD and SEM analysis show, the coating obtained by the first step pack cementation was a porous β-SiC structure, and a new phase of CrSi2 was generated in the porous SiC coating after heat-treatment according to the second step pack cementation process. Oxidation test shows that, the weight loss of the SiC coated C/C is up to 11.26% after 5 h oxidation in air at 1773 K, and the weight loss of the CrSi2-SiC coated C/C composites is only 4.15% after oxidation in air at 1773 K for 34 h. The oxidation of C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating.  相似文献   

2.
碳/碳化硅(C/SiC)复合材料是应用于临近空间高超声速飞行器热防护的一种新型防热材料.国内外通过性能测试较多地研究了材料不同制备工艺对抗烧蚀性的影响,提出的抗烧蚀分析理论模型均基于液态氧化膜.而近期开展的C/SiC复合材料管式炉加热实验和试样微观形貌电镜表征显示:常压下,当温度低于1696 K时,C/SiC复合材料氧...  相似文献   

3.
We compare aluminide and alumino-silicide composite coatings on niobium using halide activated pack cementation (HAPC) technique for improving its oxidation resistance. The coated samples are characterized by SEM, EDS, EPMA and hardness measurements. We observe formation of NbAl3 in aluminide coating of Nb, though the alumino-silicide coating leads to formation primarily of NbSi2 in the inner layer and a ternary compound of Nb-Si-Al in the outer layer, as reported earlier (Majumdar et al. [11]). Formation of niobium silicide is preferred over niobium aluminide during alumino-silicide coating experiments, indicating Si is more strongly bonded to Nb than Al, although equivalent quantities of aluminium and silicon powders were used in the pack chemistry. We also employ first-principles density functional pseudopotential-based calculations to calculate the relative stability of these intermediate phases and the adhesion strength of the Al/Nb and Si/Nb interfaces. NbSi2 exhibits much stronger covalent character as compared to NbAl3. The ideal work of adhesion for the relaxed Al/Nb and Si/Nb interfaces are calculated to be 3226 mJ/m2 and 3545 mJ/m2, respectively, indicating stronger Nb-Si bonding across the interface.  相似文献   

4.
A thin composite separator with polyethylene terephthalate nonwoven membrane as the structural support and polyvinylidene fluoride-hexafluoropropylene as the coating layer for lithium-ion batteries was prepared by a simple dip-coating process. The effect of different drying temperatures on the performance of the composite separator was investigated. The results indicate that 80 °C is the optimal drying temperature, preventing leakage current problems and providing a well-developed porous structure. The drying of the composite separator at 80 °C provides a superior thermal stability, better wettability with electrolyte, higher electrolyte uptake, and ionic conductivity compared to commercially available polypropylene (PP) separator. Furthermore, the electrochemical performance consisting of electrochemical stability, self-discharge, cycle performance, rate performance of the composite separator, and PP were determined. The drying of the composite separator at 80 °C shows almost the same oxidation stability and self-discharge performance, but a better cycling and rate performance than the PP separator.  相似文献   

5.
In the present study, porous Nb-Si alloy films with isolated nano-column morphology have been successfully developed by oblique angle magnetron sputtering on to aluminum substrate with concave cell structure. The deposited films are amorphous with the 15 at% silicon supersaturated into niobium. The porous Nb-15 at% Si films, as well as niobium films with similar morphology, are anodized at several voltages up to 50 V in 0.1 mol dm−3 ammonium pentaborate electrolyte. Due to the presence of sufficient gaps between neighboring columns, the gaps are not filled with anodic oxide, despite the large Pilling-Bedworth ratio (for instance, 2.6 for Nb/Nb2O5) and hence, a linear correlation between the reciprocal of capacitance and formation voltage is obtained for the Nb-15 at% Si. From the comparison with the anodic films formed on porous niobium films, it has been found that silicon addition improves the thermal stability of anodic niobium oxide; the change in capacitance and increase in leakage current become small for the Nb-Si. The findings indicate the potential of oblique angle deposition to tailor porous non-equilibrium niobium alloy films for high performance niobium-base capacitor.  相似文献   

6.
Apatite-type La9.33Si6O26 thin films were elaborated by co-sputtering of two metallic La and Si targets powered, respectively, by high power impulse magnetron sputtering and direct current sources, in pure Ar atmosphere, followed by a subsequent high temperature oxidation treatment in air. The structural and chemical features of these films have been assessed by X-ray diffraction and scanning electron microscopy (SEM). The film with near lanthanum silicate La/Si atomic ratio deposited on a porous Ni-YSZ cermet substrates was initially amorphous. After thermal oxidation at 1,173 K in air, the coating crystallised under the expected apatite structure. SEM observation revealed that both film compactness and thickness increased after thermal oxidation. The conductivity evolution with temperature of the pure apatite-like lanthanum silicate coatings, as measured by complex impedance spectroscopy, showed that the activation energy of is quite low compared to the literature data.  相似文献   

7.
The thermal conductivity of porous glass with randomly distributed connecting pores ~70 Å in size (glass porosity ~25%), as well as of a porous glass + NaCl composite, was measured in the temperature range 5–300 K. NaCl filled one fourth of the pores in the composite. The experimental results on the composite thermal conductivity can be accounted for only by assuming that phonons scatter from the boundaries of NaCl nanocrystals embedded in channels of the porous glass.  相似文献   

8.
The impurity composition on and near the cylindrical surface of a CVD polycrystalline tungsten film covering Nb + 1% Zr alloy is determined with SIMS and AES methods. The alloy is used as the collector material in thermionic thermal-to-electrical energy converters of space-borne nuclear power plants. A comparison with the impurity composition of a reference plane-parallel relatively perfect W(110) single crystal is made. At all stages of milling the surface by He+ and Ar+ ion beams, the coating is contaminated greater than the reference. Even after the first heating in vacuo to 1625 K, all the impurities, except carbon, oxygen, and niobium, are removed. The three impurities named are not removed by heating up to 2075 K. Niobium is shown to diffuse toward the surface through a W coating of thickness up to 30 μm. At temperatures above 1925 K, the material is heavily sputtered. After 50 oxidation cycles, the carbon content in the coating is greatly reduced. However, the subsequent 25 cycles fail in further decreasing the carbon content. The fact that oxygen cannot be removed from the surface by heating to 1925–2075 K suggests the presence of high-temperature surface Nb2W2O suboxide. It is recommended that the purity of the W coating raised in order to improve its adhesion to the O-Cs film.  相似文献   

9.
Our earlier experimental data on the thermal conductivity of porous glass and of the porous glass + NaCl composite in the temperature interval 25–300 K are analyzed from a different standpoint. It is shown that the thermal conductivity of sodium chloride filling randomly arranged nanochannels in porous glass behaves exactly like that of a strongly disordered crystalline system and can be described in terms of Einstein’s model of the thermal conductivity of solids.  相似文献   

10.
电子通量对ZnO/K2SiO3热控涂层光学性能的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
 研究了电子通量对ZnO/K2SiO3热控涂层光学性能的影响。分别采用通量为5×1011/cm2·s,8×1011/cm2·s,1×1012/cm2·s 和5×1012/cm2·s的电子对试样进行辐照。电子辐照下涂层的光学性能发生了退化,并且发现了退化涂层在空气中的“漂白”现象。分析了ZnO/K2SiO3热控涂层光学性能的退化机制,同时讨论了电子通量对太阳光谱吸收系数的影响。实验结果发现,在5×1011~1×1012/cm2·s的电子通量范围内,电子通量对ZnO/K2SiO3热控涂层光学性能的影响相同。因此在这个电子通量范围内,采用加速地面试验来模拟空间的电子辐照效应是有效的。  相似文献   

11.
Cycle oxidation resistance at 800 °C in static air was investigated for a nanostructured Ni60-TiB2 composite coating sprayed by high velocity oxy-fuel (HVOF). For comparison, a Ni60-TiB2 conventional composite coating was also studied. The results indicate that, the oxidation processes of both composite coatings are controlled by diffusion mechanism, and the nanostructured composite coating has better cycle oxidation resistance than that of the conventional composite coating. The reasons for this improvement can be attributed to the formation of the intact SiO2 and Cr2O3 protective layer, and the enhanced adhesion between oxide film and nanostructure coating.  相似文献   

12.
The stability of transport current introduced into a niobium titanium superconducting composite subjected to an external pulsed thermal perturbation has been studied. Stable states have been theoretically analyzed by solving Fourier and Maxwell equations that describe the thermoelectrodynamic states of lowtemperature superconductors with flux creep. It has been shown that, if the transport current is permanently introduced, subcritical thermal perturbations, i.e., perturbations that do not take the composite to a normal state provided that the current does not exceed the quench current, may result in the appearance of unstable current states. The higher the energy of the external thermal perturbation, the lower the instability onset current. It has been found that the degradation of the current-carrying capacity of the superconducting composite is due to intense heat release inside the superconductor, which is initiated by the thermal perturbations, and depends on the current input rate, the instant of time the current input is terminated, and cooling conditions.  相似文献   

13.
Titania composite coatings were prepared on carbon steel by plasma electrolytic oxidation in silicate electrolyte and aluminate electrolyte with titania powers doping in the electrolytes. The microstructure of the coatings was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The properties of the coatings including bond strength, thickness, thermal shock resistance and corrosion resistance varying with the quantities of titania powers in the electrolytes were studied. Investigation results revealed that the coating obtained in silicate electrolyte was composed of anatase-TiO2, rutile-TiO2 crystal phases and some Fe, Si, P elements; coating obtained in aluminate electrolyte consisted of anatase-TiO2, Al2TiO5 and some Fe, P elements. Coatings obtained in two types of electrolytes show porous and rough surface. With increasing the concentration of titania powers in the electrolytes, the coating surface first became more compact and less porous and then became more porous and coarse. The bond strength and thickness were not strongly affected by concentration of titania powers in electrolytes. The valves were 23 MPa and for 66 μm for coatings obtained in aluminate electrolyte, and 21 MPa and 35 μm for coatings obtained in silicate electrolyte. Coatings obtained in silicate electrolyte showed a little better thermal shock resistance than those obtained in aluminate electrolyte and the best coatings were obtained with middle concentration of titania powers in the electrolytes. All coated samples showed better corrosion resistance than the substrate in 3.5 wt% NaCl solution. The best coatings were also obtained with middle concentration of titania powers doping in both electrolytes whose corrosion current density was decreased by 2 orders of magnitude compared with the substrate.  相似文献   

14.
Iron/niobium nanocomposite particles are produced using the sodium flame and encapsulation (SFE) process. Ferrocene is added to the vapor-phase metal halide/sodium reaction to produce metallic iron particles encapsulated in niobium. To accomplish this, the ferrocene is combined with niobium chloride vapor and this mixture is injected as a turbulent jet into a stream of sodium vapor. The ferrocene is expected to decompose upstream of the flame to form iron particles, which pass through the niobium chloride-sodium reaction zone wherein they are encapsulated in niobium. The salt byproduct then encapsulates these particles, preventing oxidation. The as-produced Fe/Nb particles were found to contain Fe particles that are less than 15 nm in diameter and are superparamagnetic with a coercivity of 50 Oe and a saturation magnetization of over 200 emu/g of Fe. In addition to possessing a strong magnetic response and small remnant magnetization, the iron/niobium composite particles are expected to be biocompatible and X-ray opaque. Consequently, these materials hold promise for magnetic navigation in biomedical applications.  相似文献   

15.
大晶粒铌材由于声子峰效应在2 K温度具有良好的热导,这有助于提高超导腔的热稳定性。对宁夏东方钽业股份有限公司(OTIC)生产的大晶粒铌材在不同热处理条件下的热导和晶格缺陷开展了研究,结果表明经过超过800 ℃的热处理,OTIC的大晶粒铌材能够恢复声子峰,这与之前DESY的测量结果不同。认为用其加工的超导腔有望具备较好热稳定性。  相似文献   

16.
Thin-wall TM010-resonators of cylindrical and spherical shape were made from niobium sheets and investigated experimentally in the frequency range around 10 GHz. In many cases critical magnetic flux-densities up to 90mT — corresponding to accelerating fields of nearly 23 MV/m — and unloaded Q's up to 1010 were reached at a temperature of 1.3K. Measuring the thermal conductivity we found that the originally cold worked niobium is annealed by electron beam welding, and we could calculate thermal limits of flux density. Comparing experimental and calculated critical flux densities we conclude that we are near the thermal limit and no essential improvement is possible. The resonators were also coated with Nb3Sn. In this case critical flux densities of up to 70 mT and unloaded Q's of about 109 were measured at 4.2K and 1.5K.  相似文献   

17.
A thin film evaporation model based on the augmented Young–Laplace equation and kinetic theories was developed to describe the nanofluid effects on the extended evaporating meniscus in a microchannel. The nanofluid effects include the structural disjoining pressure, a thin porous coating layer at the surface formed by the nanoparticle deposition and the thermophysical property variations compared with the base fluid. The results show that the nanofluid thermal conductivity enhancement mainly due to the Brownian motion tends to greatly increase the liquid film thickness and the thin film heat transfer. The structural disjoining pressure effect tends to enhance the nanofluid spreading capability and the thin film evaporation. The nanoparticle-deposited porous coating layer improves the surface wettability while significantly reducing the thin film evaporation with increasing layer thickness due to the thermal resistance across this layer. The nanofluid thermal conductivity enhancement together with the structural disjoining pressure effect can not counteract the thermal resistance effects of the porous coating layer when the coating layer thickness is sufficiently large.  相似文献   

18.
The strain characteristics of nanocrystalline niobium are measured in the temperature range 4.2–300 K. It is shown that the development of a strong local deformation with clearly delineated macroscopic slip bands occurs at 4.2 K and 10 K. The thermal effects at a stress jump observed upon transition of the sample (or a niobium strip placed close to the sample) from the superconducting state to the normal state are estimated. It is demonstrated that the temperature dependence of the yield point σs(T) can be divided into three portions: two portions (T<10 K and T>70 K) with a slight change in σs and the third portion with a strong dependence σs(T). The strain characteristics of polycrystals with nano-and larger-sized grains are compared with those of single crystals.  相似文献   

19.
Honeycomb porous La0.6Sr0.4Co0.2Fe0.8O3−δ-Gd0.2Ce0.8O2−δ (LSCF-GDC) composite cathodes are prepared using the breath figures (BFs) method with nontoxic and easily available water droplets as templates. The fabrication of honeycomb porous membranes is realized in a relatively humid environment, using a volatile solvent. The microstructure and morphology of the membranes produced are investigated by scanning electron microscopy (SEM). The SEM micrographs suggest that experimental conditions, such as ambient temperature, relative humidity, and concentration of polymer and LSCF-GDC powder, which have direct influence on the solvent evaporation affects the pore structure of the porous membranes. Electrochemical impedance spectroscopy (EIS) is used to evaluate the polarization resistance of LSCF-GDC composite cathodes prepared at different experimental conditions. The honeycomb porous LSCF-GDC composite cathode showing average pore diameter of 10 μm illustrates the lowest polarization resistance.  相似文献   

20.
The corrosion resistance of uranium is greatly enhanced by alloying with niobium. In this study the initial stages of corrosion of a specific uranium-base alloy (U–14.1 at.% Nb) by O2 or D2O have been examined using the surface specific techniques of X-ray photoelectron spectroscopy (XPS), thermal programmed desorption (TPD), static secondary-ion mass spectroscopy (SSIMS), and sputtered neutrals mass spectroscopy (SNMS). XPS studies of the U–14.1 at.% Nb surface following oxidation using O2 at 300 K indicate production of a thin oxide overlayer of stoichiometric UO2.0 intermixed with Nb2O5. The same stoichiometry is exhibited for uranium when the oxide is prepared at 500 K with O2; although, niobium is much less oxidized exhibiting a mixture of NbO and Nb. Contrary to previous XPS literature, SNMS depth profiling studies reveal that oxidation by O2 is much greater (as judged by oxide layer thickness) than that exhibited by D2O. An oxide layer thickness of less than 20 Å was created using D2O as an oxidant at 300 K with exposures >3500 L (oxide layers created from O2 are significantly greater at much smaller exposures). Formation of a critical density of Nb2O5 is suggested to be responsible for the enhanced corrosion resistance by preventing diffusion of O (O2−) or OD/OH into the oxide/metal interface region. The domains of stability of hydroxyl formation have also been followed using TPD, SSIMS and XPS. Maximal surface hydroxyl concentrations (Θrel=0.30) are obtained at a surface temperature of 175 K for these experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号