首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In experiments of games, players frequently make choices which are regarded as irrational in game theory. In papers of Khrennikov (Information Dynamics in Cognitive, Psychological and Anomalous Phenomena. Fundamental Theories of Physics, Kluwer Academic, Norwell, 2004; Fuzzy Sets Syst. 155:4–17, 2005; Biosystems 84:225–241, 2006; Found. Phys. 35(10):1655–1693, 2005; in QP-PQ Quantum Probability and White Noise Analysis, vol. XXIV, pp. 105–117, 2009), it was pointed out that statistics collected in such the experiments have “quantum-like” properties, which can not be explained in classical probability theory. In this paper, we design a simple quantum-like model describing a decision-making process in a two-players game and try to explain a mechanism of the irrational behavior of players. Finally we discuss a mathematical frame of non-Kolmogorovian system in terms of liftings (Accardi and Ohya, in Appl. Math. Optim. 39:33–59, 1999).  相似文献   

2.
As is well known [1, 2], the wave functions of charge scattering states in the magnetic monopole field are expanded in the eigenfunctions of symmetric quantum top rotation. The established direct relationship of the total momentum operators of these systems causes the Schwinger string to vanish and demonstrates that the charge and monopole system has the property of a diatomic molecule.  相似文献   

3.
Quantum entanglement is shown to exist as a means of lowering ground state energy for multi-component systems. Symmetric and anti-symmetric system wavefunctions are thus simply due to the inter-particle potential and not to fundamental particle types: fermions and bosons. The paper shows that additionally to the cases known, bosons— apart from the condensate minimum, can exhibit an energy minimum type allowing entanglement oscillations. This fundamentally new case could conceivably be the origin of the conflicting properties observed in super-solidity: lower (fluid-like) rotational inertia (Kim and Chan in Nature 427:225, 2004; J. Low Temp. Phys. 138:859, 2005), higher (solid-like) shear modulus (Chan in Science 319:29, 2008).  相似文献   

4.
5.
A sketchy subquantum theory deeply influenced by Wheeler’s ideas (Am. J. Phys. 51:398–404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.  相似文献   

6.
The present work establishes the mean-field limit of a N-particle system towards a regularized variant of the relativistic Vlasov-Maxwell system, following the work of Braun-Hepp [Commun Math Phys 56:101–113, 1977] and Dobrushin [Func Anal Appl 13:115–123, 1979] for the Vlasov-Poisson system. The main ingredients in the analysis of this system are (a) a kinetic formulation of the Maxwell equations in terms of a distribution of electromagnetic potential in the momentum variable, (b) a regularization procedure for which an analogue of the total energy—i.e. the kinetic energy of the particles plus the energy of the electromagnetic field—is conserved and (c) an analogue of Dobrushin’s stability estimate for the Monge-Kantorovich-Rubinstein distance between two solutions of the regularized Vlasov-Poisson dynamics adapted to retarded potentials.  相似文献   

7.
We explore the quantum–classical crossover of two coupled, identical, superconducting quantum interference device (SQUID) rings. The motivation for this work is based on a series of recent papers. In [1] we showed that the entanglement characteristics of chaotic and periodic (entrained) solutions of the Duffing oscillator differed significantly and that in the classical limit entanglement was preserved only in the chaotic-like solutions. However, Duffing oscillators are a highly idealized toy system. Motivated by a wish to explore more experimentally realizable systems, we extended our work in [2, 3] to an analysis of SQUID rings. In [3] we showed that the two systems share a common feature. That is, when the SQUID ring’s trajectories appear to follow (semi)classical orbits, entanglement persists. Our analysis in [3] was restricted to the quantum-state diffusion unraveling of the master equation – representing unit efficiency heterodyne detection (or ambi-quadrature homodyne detection). Here we show that very similar behavior occurs using the quantum jumps unraveling of the master equation. Quantum jumps represents a discontinuous photon counting measurement process. Hence, the results presented here imply that such persistent entanglement is independent of measurement process and that our results may well be quite general in nature.  相似文献   

8.
In this paper, we study the macroscopic limit of a new model of collective displacement. The model, called PTWA, is a combination of the Vicsek alignment model (Vicsek et al. in Phys. Rev. Lett. 75(6):1226–1229, 1995) and the Persistent Turning Walker (PTW) model of motion by curvature control (Degond and Motsch in J. Stat. Phys. 131(6):989–1021, 2008; Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTW model was designed to fit measured trajectories of individual fish (Gautrais et al. in J. Math. Biol. 58(3):429–445, 2009). The PTWA model (Persistent Turning Walker with Alignment) describes the displacements of agents which modify their curvature in order to align with their neighbors. The derivation of its macroscopic limit uses the non-classical notion of generalized collisional invariant introduced in (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008). The macroscopic limit of the PTWA model involves two physical quantities, the density and the mean velocity of individuals. It is a system of hyperbolic type but is non-conservative due to a geometric constraint on the velocity. This system has the same form as the macroscopic limit of the Vicsek model (Degond and Motsch in Math. Models Methods Appl. Sci. 18(1):1193–1215, 2008) (the ‘Vicsek hydrodynamics’) but for the expression of the model coefficients. The numerical computations show that the numerical values of the coefficients are very close. The ‘Vicsek Hydrodynamic model’ appears in this way as a more generic macroscopic model of swarming behavior as originally anticipated.  相似文献   

9.
The high-energy high-power laser system PHELIX (Petawatt High Energy Laser for heavy Ion eXperiments) [1] is currently under construction at the Gesellschaft fuer Schwerionenforschung mbH (GSI) Darmstadt. With PHELIX GSI will offer the unique combination of a high-current, high-energy (GeV/u) heavy-ion beam with an intense laser beam. This will open the door to a variety of fundamental science issues in the field of atomic physics, plasma physics and nuclear physics. The project will gain further interest in the near future by the dramatic increase of the accelerator performance with the starting FAIR project at GSI [2]. This paper reports the current status of the project as well as the laser architecture. The proposed physics program and a first experiment carried out with PHELIX, the realization of a transient collisionally excited x-ray laser [3], will also be reviewed briefly.  相似文献   

10.
We present ultrafast X-ray diffraction (UXRD) experiments which sensitively probe impulsively excited acoustic phonons propagating in a SrRuO3/SrTiO3 superlattice and further into the substrate. These findings are discussed together with previous UXRD results (Herzog et al. in Appl. Phys. Lett. 96, 161906, 2010; Woerner et al. in Appl. Phys. A 96, 83, 2009; v. Korff Schmising in Phys. Rev. B 78, 060404(R), 2008 and in Appl. Phys. B 88, 1, 2007) using a normal-mode analysis of a linear-chain model of masses and springs, thus identifying them as linear-response phenomena. We point out the direct correspondence of calculated observables with X-ray signals. In this framework the complex lattice motion turns out to result from an interference of vibrational eigenmodes of the coupled system of nanolayers and substrate. UXRD in principle selectively measures the lattice motion occurring with a specific wavevector, however, each Bragg reflection only measures the amplitude of a delocalized phonon mode in a spatially localized region, determined by the nanocomposition of the sample or the extinction depth of X-rays. This leads to a decay of experimental signals although the excited modes survive.  相似文献   

11.
12.
We investigate the relation between the brane-based and the bulk-based approaches for anisotropic case in brane-world models. In the brane-based approach, the brane is chosen to be fixed on a coordinate system, whereas in the bulk-based approach it is no longer static as it moves along the extra dimension. It was shown that these two approaches are equivalent for specific models in Mukohyama et al. (Phys Rev D 62:024028, 2000), Bowcock et al. (Class Quant Gravit 17:4745–4764, 2000). In this paper, it is aimed to get general formalism of the equivalence obtained in Mukohyama et al. (Phys Rev D 62:024028, 2000). We found that calculations driven by a general anisotropic bulk-based metric yield a brane-based metric in Gaussian Normal Coordinates by conserving spatial anisotropy. We also derive solutions for an anisotropic bulk-based model and get the corresponding brane-based metric of the model.  相似文献   

13.
In a previous article (Baeyens and Verschelde in J. Math. Phys. 36:201, 1995), an improved approach to the scaled particle theory of Reiss et al. was presented. We used a generalized series expansion of the contact correlation function G(y,r). Truncating it after the third term, we obtained a Padé-like expression for the compressibility factor of the system. That expression contains two parameters which we were able to calculate, not only for the fluid state, but also for the known glassy states (Baeyens and Verschelde in Z. Phys. B 102:255, 1997). The resulting equations of state are in good agreement with the simulation data. Yet in the case of the hard sphere crystal our improved scaled particle theory fails, which is one of the reasons why an extension of it is desirable.  相似文献   

14.
This paper studies asymmetric strong coupling effect in two parallel exclusion processes, which is a generalization of previous works of Kolomeisky group (Pronina and Kolomeisky in Physica A 372:12, 2006; Tsekouras and Kolomeisky in J. Phys. A 41:465001, 2008). It is shown that with different configurations of hopping rates, the two-lane system exhibits diverse phase diagram and density profiles. Specifically, it shows how the phase diagram changes from having seven phases, via six phases, to three phases. Moreover, it shows that the phase diagram could have only one phase, which exhibits quadrilateral or triangular density profile. The vertical cluster mean-field approach is used to get the stationary-state bulk densities and phase diagrams. Extensively Monte Carlo simulations are carried out, and theoretical predictions are in excellent agreement with simulation results.  相似文献   

15.
16.
17.
We consider a class of stochastic dynamical systems, called piecewise deterministic Markov processes, with states (x,σ)∈Ω×Γ, Ω being a region in ℝ d or the d-dimensional torus, Γ being a finite set. The continuous variable x follows a piecewise deterministic dynamics, the discrete variable σ evolves by a stochastic jump dynamics and the two resulting evolutions are fully-coupled. We study stationarity, reversibility and time-reversal symmetries of the process. Increasing the frequency of the σ-jumps, the system behaves asymptotically as deterministic and we investigate the structure of its fluctuations (i.e. deviations from the asymptotic behavior), recovering in a non Markovian frame results obtained by Bertini et al. (Phys. Rev. Lett. 87(4):040601, 2001; J. Stat. Phys. 107(3–4):635–675, 2002; J. Stat. Mech. P07014, 2007; Preprint available online at , 2008), in the context of Markovian stochastic interacting particle systems. Finally, we discuss a Gallavotti–Cohen-type symmetry relation with involution map different from time-reversal.  相似文献   

18.
The study of axially symmetric stationary multi-black-hole configurations and the force between co-axially rotating black holes involves, as a first step, an analysis on the “boundary regularity” of the so-called reduced singular harmonic maps. We carry out this analysis by considering those harmonic maps as solutions to some homogeneous divergence systems of partial differential equations with singular coefficients. Our results extend previous works by Weinstein (Comm Pure Appl Math 43:903–948, 1990; Comm Pure Appl Math 45:1183–1203, 1992) and by Li and Tian (Manu Math 73(1):83–89, 1991; Commun Math Phys 149:1–30, 1992; Differential geometry: PDE on manifolds, vol 54, pp. 317–326, 1993). This paper is based on the Ph.D. thesis of the author (Singular harmonic maps into hyperbolic spaces and applications to general relativity, PhD thesis, The State University of New Jersey, Rutgers, 2009).  相似文献   

19.
The paper studies scaling limits of random skew plane partitions confined to a box when the inner shapes converge uniformly to a piecewise linear function V of arbitrary slopes in [−1, 1]. It is shown that the correlation kernels in the bulk are given by the incomplete Beta kernel, as expected. As a consequence it is established that the local correlation functions in the scaling limit do not depend on the particular sequence of discrete inner shapes that converge to V. A detailed analysis of the correlation kernels at the top of the limit shape, and of the frozen boundary is given. It is shown that depending on the slope of the linear section of the back wall, the system exhibits behavior observed in either Okounkov and Reshetikhin (Commun Math Phys 269(3):571–609, 2007) or Boutillier et al. ( [math-ph], 2009).  相似文献   

20.
We investigate non-Hermitian Hamiltonian which governs system includes two-level atoms and electromagnetical field. Using the notion of negativity, we study the degree of entanglement of a two- level atom interacting with a quantized electromagnetical field, described by the non-Hermitian Hamiltonian (Saaidi in Phys. Scr. 77:0065002, 2008). With the help of numerical calculation for the case that the system state is pure, we show that the measurement of negativity of this system is nonzero and has a different functional with respect to negativity of the Jaynes-Cumming model (JCM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号